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for seed-dispersing birds through the use of resource-provisioning effectiveness

(quantity component) and the quality of the ingesta in terms of energy and nutri-

. Our results show wide variation in RPE among fleshy-fruited plant species.

Energy-rich fruits consistently show a smaller quantity component, while ener-

Handling Editor: Yvonne Buckley getically poor fruits are consistently the most consumed, with fruit species span-
ning a gradient from these two extremes.

4. The specific RPE, resulting from a pairwise fruit-frugivore interaction is positively
correlated with the total RPE (RPE;) that a given fruit species has for the whole
frugivore assemblage. RPE therefore appears to be a characteristic feature of the
fruit species, rather than of the specific frugivore partner.

5. Only the fruit's specific energy content showed a significant phylogenetic signal,
suggesting potential constraints for free covariation between RPE and SDE of
fruits and frugivores.

6. Synthesis. We analyse variation in the effectiveness of fleshy-fruit food provision-

ing to avian frugivores by explicitly redefining RPE within the SDE framework. We

found ample variation in RPE among plant species, showing differences in both
quantity and quality components of fruit resources rewards for the frugivores.

Our findings help unravel how seed-dispersing birds may discriminate among al-

ternative fruit resources and to understand the configuration of mutual depend-

encies among mutualistic partners.
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1 | INTRODUCTION

Seed dispersal processes exemplify the widespread animal-plant
mutualisms present in nature (Janzen, 1983). Plants provide their
fruits as a food resource, while animals are the transport vector for
their seeds to get dispersed in conditions adequate for their estab-
lishment, with both partners attaining in the end a reciprocal benefit.
However, all plant-frugivore interactions are not equally effective,
and a major challenge has been to identify which elements are key
determinants of their effectiveness for both animal and plant part-
ners. The mutual dependence between partners in plant-frugivore
interactions thus pivots on these aspects of effectiveness: how ef-
fective frugivores are for the plants, and how effective plants are as
resource providers to the animals.

As a way to measure mutualistic interactions, early studies
tried to quantify and compare how effective are different seed
dispersal services. However, a persistent challenge has been ob-
taining effectiveness estimates that could be compared across
studies and different forms of mutualisms, given the variety of
approaches, measures and methods used. Seed dispersal ef-
fectiveness (SDE) arose as a novel framework with the aim of
unifying, standardizing and comparing across studies (Schupp,
1993). SDE uses quantity and quality components as proxies to
quantify the contribution of different frugivore species to plant
fitness (Figure 1a). The quantity component measures the fre-
quency of the interaction through visitation rate and the prob-
ability of seeds being removed and dispersed; while the quality
component depends on the treatment of seeds in the animal's
gut (for endozoochorous dispersal systems) and the deposition
patterns. Quantity and quality components are multiplicative
and together give a total effect (Vazquez, Morris, & Jordano,

(a) Seed dispersal (b)
effectiveness (SDE):
Number of new

2005) to the interaction. Effectiveness landscapes help visual-
izing variation in quantity and quality components across spe-
cies and their contribution to the total effectiveness. They are
two-dimensional representations of the possible combinations
of the quantity and the quality components with elevational
contours representing isoclines of SDE (Schupp, Jordano, &
Gdémez, 2010, 2017).

Recently, the SDE framework has been proposed to be applied
to other plant-animal interactions, and extended to other perspec-
tives (Schupp, Jordano, & Gémez, 2017). Most studies on SDE are
focused on the ‘phytocentric’ perspective, that is, the effect that
dispersers have on the plant fitness—a plant's perspective (Godinez-
Alvarez, Valiente-Banuet, & Rojas-Martinez, 2002; Jordano & Schupp,
2000; Loayza & Rios, 2014; Loiselle & Blake, 1999; Rother, Pizo, &
Jordano, 2016; Spiegel & Nathan, 2007). Yet, few or no studies look
at the other side of the picture, that is the contribution of different
fleshy-fruited plants for disperser fitness, or how plants vary in their
resource-provisioning effectiveness (RPE) to frugivores—the frugiv-
ores’ perspective (Albrecht, Hagge, Schabo, Schaefer, & Farwig, 2018;
Schupp et al., 2017).

Here we aim to assess and characterize variation in the effect that
fruits have on avian frugivores in terms of energy intake, using the
RPE framework initially suggested by Schupp et al. (2017). The RPE
framework adapts SDE quality and quantity components for the dis-
perser perspective. The quantity component is described as the feed-
ing rate attained by the frugivore while feeding on the plant, while
the quality component is defined as the energy that the frugivore is
able to obtain from the fruit food (see Herrera, 1981). The multipli-
cation of these two components yields the ultimate effect that fruit
resources provisioned by a plant species have on the fitness of the
frugivore consuming them (Schupp et al., 2017). We might expect

Resource-
provisioning
effectiveness (RPE):

recruits Energy per hour
[ X | [ X 1
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FIGURE 1 (a)Seed dispersal effectiveness (SDE) and (b) resource-provisioning effectiveness (RPE) conceptual schemes. Both models are

used as a framework to measure the effectiveness of mutualistic interactions; model (a) for the plant perspective and (b) for the frugivore
perspective. All components are either multiplicative or additive (indicated by mathematical sign above) and ordered in hierarchical levels.
The pink-dashed border (b) indicates a subcomponent of digestibility measures used to refine the quality estimates (see Figure S5). N,
number; p, probability. See Schupp et al. (2017) [Colour figure can be viewed at wileyonlinelibrary.com]
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ample variation in RPE among plant species, given not just variation in
fruit morphology and nutrient content (Herrera, 1981; Jordano, 1995)
but also in fruit availability, accessibility or any other characteristic
that determines how rewarding a fruit resource is for the frugivore.

Understanding the variation in energy provisioning across plant
taxa is thus fundamental to understand the drivers of frugivore
foraging preferences and the evolutionary strategies of plants re-
garding fruit displays and dispersal ability. To the best of our knowl-
edge, no previous study has attempted such a ‘zoocentric’ analysis
of seed dispersal mutualism by addressing variation in RPE. As an
example of this approach, consider a frugivorous bird consuming
fruits to store fat for migration by consuming different fruit spe-
cies. RPE in this case would be measured as the energy accumu-
lated when feeding on different fruit species. From the frugivore
perspective, variation in resource provisioning across plant species
is expected to depend on differences in fruit traits determining
quantity (e.g. fruit crop size, fruit accessibility, local density) and
quality (e.g. per fruit content of nutrients and energy and assim-
ilation efficiency) aspects of the use of this fruit resource by the
frugivore (RPE; Figure 1b).

Many of the trees and shrubs present in tropical forests rely on fru-
givores for the dispersal of their seeds, and ultimately the successful
establishment of new individuals (Howe & Smallwood, 1982; Jordano,
2013; Loiselle & Blake, 1999). For our comparative study of RPE pat-
terns we use neotropical bird-plant interactions occurring in the
Atlantic rainforest of Southeastern Brazil. The Atlantic rainforest is an
extensive biome that has undergone a severe fragmentation retaining
c. 11.4%-16% of its original cover (Ribeiro, Metzger, Martensen, Ponzoni,
& Hirota, 2009), yet being one of the world's biodiversity-hotspot
areas (Myers, Mittermeier, Mittermeier, Da Fonseca, & Kent, 2000).

Specifically we asked the following questions: (a) which are
the main patterns of variation and covariation of RPE components
across fruit species that interact with a diverse frugivore avifauna?;
(b) is the specific RPE of a given pairwise fruit-frugivore interaction
(RPE,) correlated with the average RPE of the fruit species across
interactions (RPE;)? In other words, are the overall RPE; values of
fruit species predictable from pairwise interactions?; (c) how does
refining the quality component with measures of digestibility alter
RPE;?; and (d) does phylogenetic relatedness across the studied plant
species explain a significant part of the variation in RPE?

Potential causes that modulate the configuration of each fruit's
RPE are looked into in detail. Additionally, we explore the influence
that fruits phylogenetic relatedness may have, assuming some effect
in RPE or its components during the adaptive radiations of seed dis-
persal mutualisms, especially for the qualitative component. Finally,
we propose new applications and further developments of the RPE

framework here described.

2 | MATERIALS AND METHODS

The rationale for our study includes four steps: (a) selecting a rep-

resentative sample of frugivore species illustrating both the full

range of body mass and phylogenetic diversity of the Brazilian
Southeastern Atlantic forest frugivores, (b) compiling a literature
dataset on fruit foraging and usage data for these frugivore spe-
cies, (c) analysing variation in RPE across selected plant species by
building effectiveness landscapes from the frugivore's perspective,
and (d) experimentally assessing RPE subcomponents (i.e. fruit pulp
digestibility) that refine the estimates of RPE variation among plant
species.

2.1 | Species selection
Atotal of eight different bird families have been selected: Cracidae,

Turdidae,

Thraupidae and Fringillidae. Within each family we selected two

Ramphastidae, Trogonidae, Cotingidae, Tityridae,
or more replicate species (we grouped Tityra cayana and Procnias
nudicollis) which were relatively common and had enough infor-
mation available in published studies. Because the scope of the
study was to explore how effective different fruits are for their
animal dispersers, we have not considered seed predators such as
the Psittacidae family (however see: Blanco et al., 2016; Blanco,
Hiraldo, Rojas, Dénes, & Tella, 2015). The resulting 18 species se-
lected for evaluation in this study are located in assorted posi-
tions of the whole range of avian body masses present in Brazilian
Atlantic rainforest (Figure 2; Table S1). Selected species show a
homogenous distribution in terms of body size, higher order taxo-
nomic categories, fruit handling behaviour (e.g. gulping, mashing;
Levey, 1987) and seed treatment (ingestion vs. regurgitation).

Fruit species were selected a posteriori, based on the available
information for feeding frequency and fruit energy, also looking to
exemplify major endozoochorous plant taxa.

2.2 | Model details

To estimate the RPE for fruit species consumed by each frugivore
species we have defined its two components (Figure 1b): the rate
at which the fruits are ingested/handled by the animal (feeding
rate) as the quantity component and the energy gained from eat-
ing the fruit (fruit energy) as the quality component. The feeding
rate is calculated by multiplying the bird visitation frequency to
the plant by the number of fruits consumed in each visit; from a
frugivore perspective these subcomponents of RPE quantity il-
lustrate potential encounter rates with the fruit resource (visita-
tion) and potential handling/ingestion rates once the fruits are
encountered (fruits/visit). Fruit pulp energy yield is assessed using
the specific energy (kJ/g) multiplied by the fruit pulp dry mass.
Since the nutrient proportional contents of the fruit pulp are cal-
culated based on its dry mass, we use this value as the profitable
fruit mass per fruit (Herrera, 1981). Specific energy was quanti-
fied using the following energy conversion factors for fruits (FAO,
2002): 14.1 kJ/g for proteins, 35 kJ/g for lipids and 15.1 kJ/g for

carbohydrates. Ultimately, by multiplying the two components we
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FIGURE 2 Variation in body mass (g) across the frugivore bird species included in this study. Dots in the left rectangle correspond to all the
avian frugivore species present in the Atlantic rainforest; dots in the right rectangle correspond to the 18 selected avian species for analysis of
fruit resource-provisioning effectiveness (RPE) of their main fruit-food species. The colours of the dots indicate the family to which the species
belongs. The bird pictures illustrate some of the frugivore species selected [Colour figure can be viewed at wileyonlinelibrary.com]

obtained the total effect value for each specific interaction (RPE;
Schupp, 1993; Schupp et al., 2017):

no fruits consumed
obs time (hr)

genergy accumulated
fruit consumed

RPE[genergyassimilated] = (1)

Note that the RPE estimate for a given fruit species is specific for
its interaction with a frugivore, so we used the average RPE values
of a given fruit of all the frugivore species it provides food, to char-

acterize its overall or total effectiveness (RPET):

N
R ET:%, (2)

hY

where, for a given focal fruit species, N is the number of pairwise inter-
actions with RPE data available and RPE; is the RPE value for a specific
pairwise interaction i. Thus, RPE is fruit species-specific, while each
pairwise interaction has a specific RPE value (RPE,) depending on the

identity of the specific frugivore partner.

2.3 | Data collection
2.3.1 | RPE quantity component

Most of the data used to calculate the quantitative component have
been obtained from available bibliographic sources. Data compila-
tion comes from a total of 51 studies and four databases for frugi-
vore-plant interactions from the Brazilian Atlantic Forest (see Data

Sources section for a list of data sources used and Figure S1 for a

map of study locations). Variables collected from the bibliography
were as follows: number of visits, observation time and number of
fruits consumed per visit. To reduce bias we divided the total num-
ber of visits to the plants by observation time to control for the
different duration of each study. The fruit mass ingested per visit
was positively correlated with frugivore body mass (Pearson's cor-
relation r = .588, p < .001, n = 541 distinct pairwise interactions;
Figure S2). Fruit mass-body mass correlation allowed the estima-
tion of the number of fruits consumed per visit for avian species
with no data on fruit consumption rates available; this was done for
special cases when avian species had limited number of records in
most studies (n = 7 fruit species for Aburria jacutinga, n = 2 fruit spe-
cies for Penelope obscura, n = 3 fruit species for Procnias nudicollis).

We have referred to a fruit as all the dispersing and consequently
ingested units (i.e. diaspora). Diaspora and fruit are often the same
thing; however, in some cases such as Cabralea canjerana or Virola
spp., an aril (i.e. a fleshy covering in some seeds) acts as a diaspore,
being smaller than the actual fruit. Therefore, when the diaspore
was actually different from the fruit, the energy in the qualitative
component has been measured accordingly. In other cases frugiv-
ores may peck pieces and ingest just a part of the whole fruit or in-
fructescence (e.g. catkins of Cecropia spp. or syconia from Ficus spp.).
For those large infructescences that birds do not consume whole, we
used the number of pecks and assessed the percentage of a single
fruit actually consumed, corresponding to a given number of pecks
and the beak size of the frugivore. Data on each species’ gape size
and fruit length (obtained from Bello et al., 2017 and Galetti et al.,
2013) allowed us to estimate the total number of pecks needed to

consume an infructescence (Table S1).
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TABLE 1 Fruit species mean values for overall quantity component, quality component, RPET and RPE values for frugivore species-
specific interactions which include: Penelope obscura, Aburria jacutinga, Ramphastos vitellinus, Ramphastos dicolorus, Selenidera maculirosttris,
Baillonius bailloni, Trogon surrucura, Trogon viridis, Procnias nudicollis, Tityra cayana, Turdus rufiventris, Turdus albicollis, Thraupis palmarum,
Thraupis sayaca, Tangara cyanocephala, Tangara seledon, Euphonia chlorotica and Euphonia violacea

Plant species
Acnistus arborescens
Alchornea glandulosa
Alchornea triplinervia
Cabralea canjerana
Cecropia glaziovii
Cecropia pachystachya

Citharexylum
myrianthum

Copaifera langsdorffii
Cupania oblongifolia

Erythroxylum
ambiguum

Eugenia umbelliflora
Eugenia uniflora
Euterpe edulis

Ficus benjamina
Magnolia ovata
Miconia prasina
Miconia pusilliflora
Myrsine coriacea
Myrsine gardneria
Myrsine umbellata

Nectandra
megapotamica

Ocotea pulchella
Phoradendron affine

Phoradendron
crassifolium

Phoradendron
piperoides

Protium heptaphyllum
Schefflera morototoni

Schinus
terebinthifolius

Sloanea guianensis
Sorocea ilicifolia
Tapirira guianensis
Trema micrantha
Virola bicuhyba
Virola oleifera
Virola sebifera

Vitex polygama

Family
Solanaceae
Euphorbiaceae
Euphorbiaceae
Meliaceae
Urticaceae
Urticaceae

Verbenaceae

Fabaceae
Sapindaceae

Erythroxylaceae

Myrtaceae
Myrtaceae
Arecaceae
Moraceae
Magnoliaceae
Melastomataceae
Melastomataceae
Primulaceae
Primulaceae
Primulaceae

Lauraceae

Lauraceae
Santalaceae

Santalaceae

Santalaceae

Burseraceae
Araliaceae

Anacardiaceae

Elaeocarpaceae
Moraceae
Anacardiaceae
Cannabaceae
Myristicaceae
Myristicaceae
Myristicaceae

Lamiaceae

12

11
24

g

s

O B, BN BN BN %))

Quantity C
0.83+0.22
3.67 +1.31
0.54+0.24
1.53+0.78
0.04 +0.02
0.01 £ 0.00
0.58 +0.19

0.38+0.20
1.78 £1.34
0.53+0.27

0.88+0.45
1.81+1.20
0.16 £ 0.04
4.81+3.64
1.64 £0.51
2.89+£2.76
0.12

3.05+0.94
0.07 £0.04
4.74 £ 3.84
3.18+1.97

191
36.0+0.32
3.81

3.60+1.20

1.17 £0.34
0.49 +£0.13
413+1.41

0.24 £0.06
0.40

1.08 £0.47
3.42+1.39
0.09 +0.04
0.01 £0.00
0.33+0.17
10.20

Quality C
0.25
0.50+0.16
1.44

10.02 + 1.02
5.08 £ 0.60
5.39 +0.62
2.08

1.4+£046
3.59£1.08
4.29

0.79
6.49 +1.28
518 +1.15
1.19
5.45+0.66
1.12
0.47
0.25 +0.07
0.17 £0.03
0.03£0.01
1.93+0.53

1.63+0.97
0.15+0.08
0.15+0.08

0.15+0.08

42+1.73
1.88+£0.20
0.02 £0.01

2.75+1.31
4.48

9.44

0.11 +0.03
14.72 + 0.69
11.04 +0.50
2.54+0.42
0.66

RPE;
0.16
iL57
0.76

11.41
0.16
0.03
1.04

0.76
4.09
2.10

0.69
6.72
0.82
5.74
11.08
2.89
0.06
0.54
0.02
0.18
6.13

3.11
5.53
0.59

0.55

4.33
1.05
0.07

0.75
1.79
10.95
0.47
1.31
0.09
0.96
6.71

Cracidae Ramphastidae
P.obs A.jac R.vit R.dic S.mac B.bal
31.30 19.97 5.27
0.09 0.11 0.22
0.23
0.21
040 3.24 0.54 0.22 2.08 1.21
0.27
0.66
0.88
0.98
1.13 0.19 1.15
0.17 0.04 0.08
6.71

Note: The n column indicates the number of recorded pairwise interactions for each plant species found in literature and used for the calculations.
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Trogonidae Cotingidae  Tityridae Turdidae Thraupidae Fringilidae
T. sur T. vir P. nud T. cay T. ruf T. alb T. pal T. say T.cya T. sel E. chl E.vio
0.16
2.49 1.55 0.73 3.76 0.42 0.49
0.97 1.19 0.11
1.37 5.30 5.23
0.01 0.01 0.02 0.01 0.30 1.34 0.00 0.02 0.01 0.01
0.03 0.04
1.08 1.04 1.61 0.42
0.35 0.04 1.89
17.87 2.05 0.22 0.22 0.06
0.72 3.02 4.44
0.20 0.66 0.41 0.13 2.04
0.65 19.29
1.52 0.49 0.03 0.29 0.48 0.04 0.06
1.40 10.09
8.11 14.06
0.13 0.13 8.40
0.06
0.18 2.32 0.44 0.04 0.25 0.68 0.17
0.02 0.01
0.07 0.61 0.00 0.04
0.22 0.17 8.09 16.05
3.11
5.53
0.59
0.74 0.37
3.47 1.88 0.13 10.86 5.17 6.77 5.67
0.07 1.68 1.14 1.48
0.04 0.07 0.05 0.18 0.01
0.20 0.79 0.69
1.79
8.06 30.01 3.88 1.85
1.27 0.15 0.31 0.17
4.95 0.38 0.96 0.38
0.12 0.06
0.37 0.86 0.08 2.54
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2.3.2 | RPE quality component

All fruit pulp dry masses and nutrient proportions were obtained from
available databases (Bello et al., 2017; Jordano, 1995, 2007; M.A. Pizo,
unpubl. data). In a few cases, pulp dry mass values were missing; these
were estimated using additional species-specific data such as pulp
fresh mass or water proportion (six species records imputed in this
way; see Table S2). However, when species-specific data were unavail-
able, we estimated the specific values by averaging the data available
for congeneric species. This type of data imputation was done for a
few cases and only when essential to retain a given species in the data-
set (nine species records were imputed this way; see Table S3).

When calculating specific energy, we preferably used the
non-structural carbohydrate content for the carbohydrate value;
however, when this information was not available total carbohydrate
content or total sugar content was used (see Table S4).

Due to the diverse origin of nutritional data, variation in the tech-
niques and devices used for their analyses is likely. This variation in
methods together with the use of different carbohydrate content vari-
ables have limitations when comparing energetic values among fruits.
We therefore want to highlight these possible limitations and advise
to take results cautiously. While the quality component gives us an
approximate idea of the nutritional value of each fruit it does not offer
a detailed ranking.

A total of 315 different fruit species were reported to be
eaten by the frugivore species considered in this study, of which
36 fruits had enough data to calculate the quantity and quality

component.

2.4 | Model refinement

With the aim of giving a higher resolution to the model, we addition-
ally included bird's fruit pulp digestibility as a subcomponent to the
quality component. This gives us additional information on potential
nutrient absorption and so energy acquisition, thus refining the es-
timate of RPE for a given plant species. Unfortunately, very scant in-
formation and experimental data are available. To fill this knowledge
gap and improve the RPE dataset, we performed feeding experiments
with some bird species, and re-calculated the effectiveness for a
small subsample of the plant-frugivore interactions (see Supporting

Information Supplement 1).

2.5 | Data analysis

The data analysis was done using the R statistical environment (R
Development Core Team, 2017). All the species nomenclature was
checked and corrected with Taxize R package (Chamberlain et al.,
2016) in order to have updated and consistent taxonomic infor-
mation. Effectiveness landscapes were plotted using the r pack-
age effect.Indscp (Jordano, 2017). The graphs were built for each

frugivore species and grouped by family when possible to facilitate

comparisons between similar or congeneric species. A common ef-
fectiveness landscape was created using fruit-specific RPE as a gen-
eral overview of RPE variation for the frugivore assembly.

In order to see if the RPE; values of the different fruit species were
consistent with RPE, (interaction-specific RPE values), we plotted all
specific interactions with two or more frugivores species consuming
the same fruit (RPE) against RPE;. These excluded six plant species
that have data for only one frugivore consuming it. The data were
transformed logarithmically to improve normality. To visualize the
relationship, we used local polynomial regression and calculated the
correlation coefficient as a measure of the strength of the relationship.

Finally, we tested for plant phylogenetic signal in RPE and its
components. Phylogenetic signal is the tendency of related species
to resemble each other more than randomly selected species from
the same phylogenetic tree (Miinkemdiller et al., 2012). To do this, we
calculated three different statistics using the phylosignal r package
(Keck, Rimet, Bouchez, & Franc, 2016). Abouheif's C, Blomberg's K
and Pagel's 4 are three different indexes used to estimate the phy-
logenetic signal. While both Blomberg's K and Pagel's 1 assume a
Brownian motion to model the evolution (i.e. random drift in spe-
ciation), Abouheif's C is not based in any evolutionary model but in
autocorrelation (Miinkemidiller et al., 2012). Pagel's 1 ranges from O
to 1 and Blomberg's K from O to >>1. In both cases, O corresponds
to independent trait evolution. For Pagel's 4, 1 indicates trait evolu-
tion according to Brownian motion along the phylogeny branches; in
the case of Blomberg's K, K > 1 indicates higher phylogenetic signal
than expected by Brownian motion, while K < 1 suggests less phy-
logenetic signal than expected from Brownian motion. Abouheif's C,
an autocorrelation index, ranges from O to 1, where deviation from
zero indicates higher resemblance between traits and the phylog-
eny. Plant phylogeny was obtained with the web version of package
Phylomatic (v. 3.0; Webb & Donoghue, 2005), and branch length
computation was done through Grafen method, which is based in
simple node distances but not evolutionary time (Grafen, 1989), with

R package picanTE (Kembel et al., 2010).

3 | RESULTS
3.1 | Overview of plant RPE

A total of 147 unique species-specific interactions were found, for
which it was possible to calculate RPE values. Table 1 shows the
RPE; value of each fruiting plant, as well as the specific RPE; values
for each of the frugivores consuming the same plant species.

The effectiveness landscape for each frugivore species consid-
ered in the study can be found in Figure S3. Thrushes, tanagers
and toucans were the species that consumed a particularly diver-
sified set of fruit species with a greater fruit size range. Trogons,
in contrast, were one of the groups with fewer records. The most
complete RPE landscape we could obtain was for Turdus rufiven-
tris, with the highest record of interactions reported in the litera-

ture (n = 23, Figure S3.6). Euterpe edulis and Cecropia glaziovii were
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FIGURE 3 Total resource-provisioning effectiveness (RPE;) landscape of plant taxa for all the avian species considered in the study. Each
point corresponds to one fruit species and is located according to its average effectiveness across frugivore species with which it interacts. RPE
is a product of its quantity component (number of consumed fruits per hour) on the X axis and its quality component (energy per fruit in kJ) on
the Y axis. Points along the isolines have, by definition, equal RPE; the numbers on the right of the graph indicate RPE values for the depicted
isolines. Horizontal and vertical lines at each point represent +1 SE for the quantity and quality components of RPE. Point size and colour
represent the actual energetic mass or pulp dry mass (PDM) of each fruit species [Colour figure can be viewed at wileyonlinelibrary.com]

the food source that most overlapped in the diet of the species
analysed.

The RPE; landscape (Figure 3) combines the information for all
the frugivore species into a single graph, pooling the RPE; value for
each fruit species. If we divide the resulting plot with a diagonal line
from the left-top corner to the right-down corner, all the RPE points
remain restricted to the lower left half, this configuration seems to
be consistent with the distributional pattern in the individual RPE;
landscapes (Figure 3; Figure S3). In order to describe the scattering
of fruit species, the graph can be divided into four regions. The first
region corresponds to those species located in the lower left corner,
with very poor effectiveness values because of a low score in both
components, such as Schefflera morototoni, Citharexylum myrianthum
or Copaifera langsdorfii. Then, a second group of poorly energetic spe-
cies, but with a high consumption rate, is located in the lower right
sector of the landscape (e.g. Trema micrantha, Alchornea glandulosa,
Schinus terebinthifolius and Phoradendron piperoides). The third group
is composed of few species with very high-quality component, such as

Virola bicuhyba, Cabralea canjerana and Tapirira guianensis, that are less

frequently consumed, but their quality component greatly increases
their effectiveness. Finally, there is a fourth group composed of those
species with medium-high pulp energy content that, depending on
their consumption frequency, have higher or lower effectiveness. This
is the group that shows the greatest variation in both components and
is composed of several fruit species such as Magnolia ovata, Eugenia
uniflora, Cecropia spp. or Protium heptaphyllum.

3.2 | Correlates of effectiveness variation in plants

The relation between the RPE, values obtained for each frugivore
species (i.e. interaction-specific) and the average RPE; for each fruit
species value showed a positive raw correlation of 0.554 (t = 7.85,
df = 139, p < .001) and 0.720 when log-transformed (t = 12.21,
df = 139, p < .001; Figure 4). This indicates that there is ample variation
in RPE; across fruits, and that the differences across the studied plant
species (i.e. along the X axis) are not hidden by variation in the mode

of interaction with frugivore species that widely differ in the way they
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TABLE 2 Indices for Abouheif's C,
Blomberg's K and Pagel's A phylogenetic
effects with their statistical significance
(p value) for the quantity and quality
components, resource-provisioning
effectiveness (RPE), specific energy and
pulp dry mass of 34 fruit species (Figure
S4 includes the plant phylogenetic tree
used)

*p < .05, **p < .01.

use the fruits (variation along the Y axis for each specific value on the X
axis). Thus, the resulting RPE, is positively related to the RPE; that the
fruit species has for the whole frugivore assemblage. This reveals that
RPE, as defined here, is a characteristic feature of the fruit species,
less dependent of the specific frugivore partner it has in a particular
pairwise interaction. Yet we must note that our calculation of RPE im-
plicitly assumes that different birds are equally able to extract energy
from the same set of fruits, which is not guaranteed (see below).

When total RPE was recalculated using pulp digestibility data
(RPE,), all RPE, values consistently decreased (Figure S5). We cau-
tion about the interpretation of these results and their generaliza-
tion due to the limited number of species we had available during
our experiments. Yet, the limited sample points have a consis-
tent direction for declining RPE when accounting for digestibility
constraints.

3.3 | Phylogenetic signal of fruit RPE

All three phylogenetic signal statistics for each effectiveness compo-
nent are presented in Table 2 together with their p-value (i.e. probabil-

ity of finding the observed phylogenetic signal under a null model). The

quantity component and the RPE; showed low values for phylogenetic
signal (Table 2; see Figure S4 for the phylogenetic tree used). This sug-
gests that fruit consumption frequency as well as fruit RPE do not appear
to be marked with a significant phylogenetic signal across the set of taxa
and species analysed. Fruit-specific energy instead showed significant
phylogenetic signal for Abouheif's and Blomberg's indices, and the quality
component and pulp dry mass were marginally significant for Abouheif's
C. Overall, these results indicate that RPE values of closely related species
are no more similar to each other than when compared with randomly
selected species of the phylogenetic tree. However, fruit-specific energy
appears influenced by the plant phylogeny, with significant—but reduced—
phylogenetic signal values, implying closely related plant species showing
more similar specific energy than expected for random comparisons.

4 | DISCUSSION

4.1 | Resource-provisioning effectiveness
framework: A ‘zoocentric’ approach

The utility of the RPE landscape lies in providing a quantitative

tool to assess how efficient fleshy-fruited plants are in providing
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food resources to a diverse coterie of frugivores (Wheelwright &
Orians, 1982). In general, the most energetically rich species fell
in low positions on the quantity component axis, while the spe-
cies with a lower energetic value reached the highest ranks on
this quantity component. This energy-rich little-consumed pattern
is mostly explained by fruit size and crop size, since bigger fruits
tend to be less abundant and offer more food quantity and so take
longer to process, causing lower total consumption in comparison
to small fruits. Also, physiological constraints likely explain this
pattern (Levey & Martinez del Rio, 2001), namely, energetically
rich fruits are often lipid-rich ones, and lipids take longer than
sugars to be metabolized and absorbed. Thus, birds that often in-
gest lipid-rich fruits cannot take many fruits at once (limited QTY
component) simply because the gut takes longer to be emptied.
Thus, the RPE landscape shows a well-documented gradient of
fruit profitability for avian frugivores (Howe & Estabrook, 1977;
McKey, 1975; Snow, 1971). Yet the RPE landscape informs about
how subtle variations in these components may or may not deter-
mine major shifts to higher RPE in a particular fruit-bird interac-
tion. While aspects of the quality component appear more fixed
(i.e. constrained by digestibility or the species-specific nutrient
combination in the pulp), those of the quantity appear more labile,
related to for example variations in fruit supply that influence visi-
tation and foraging rate. Our results show a covariation pattern
across fruit species in RPE that modulates the outcomes of fruit-
bird interactions along two directions. First, some fruit species
appear more effective by representing a readily accessible food
resource, allowing high visitation and high feeding rates, even with
marginal quality in terms of gross energy assimilation. In contrast,
some fruit species rely on lower consumption rates yet with higher
per-interaction profitability. Most fruit species appear constrained
to either trend, with no instances of simultaneously high-quantity
and high-quality profitability.

The resulting effectiveness landscape (Figure 3) suggests that,
as the quality component of a fruit impoverishes, the quantity com-
ponent, related to frequency of consumption, has a wider margin to
increase. Note that variation along the quantity X axis of the RPE
landscape is influenced by fruit-use variables, directly related to
the specific frugivore species; while the quality component is more
related to intrinsic properties of the fruit pulp. Thus, there is more
room for ecological factors (i.e. local abundance, visitation rate, im-
portance of non-fruit food in the diet) to modulate variation along
the X axis for the outcome of a particular bird-fruit interaction. Yet,
the ‘opportunities’ for increases in the quantity component appear
to be constrained by factors that prevent rich fruits from having
higher consumption frequencies, as for example fruit size. The lack
of data points in the upper right sector of the RPE landscape sug-
gests constraints for any fruit species to move upwards along both
axes. This pattern appears to reflect early proposals of two basic
strategies in fleshy-fruited plants which, at their extremes, have gen-
eralized and specialized forms of interaction with avian frugivores
(i.e. The Paradigm, Howe, 1993; Howe & Estabrook, 1977; McKey,
1975; Snow, 1971).

As suggested by Howe (1993), seed dispersal systems of fleshy-
fruited plant species could be classified into two distinct groups
depending on their fruiting strategy, that he called ‘The Paradigm’.
The first group of plants would produce highly nutritious large fruits
in small quantities and dispersed by specialized frugivores; while
the second group would be integrated by plants that produce very
abundant but small and poorly nutritious fruits that would be dis-
persed by opportunistic frugivores. The distribution pattern of fruit
species across the RPE landscape partly supports this early para-
digm of a dichotomy in fleshy-fruited plants. The highest-quality
fruits are usually lipid-rich, large fruits that, by being large, are nec-
essarily eaten in small quantities (with additional digestibility con-
straints, Levey & Martinez del Rio, 2001), while some of the lowest
quality fruits are consumed with the highest frequency. Our RPE
landscape results agree with The Paradigm if visitation frequency
was only limited by the plant's fruit production capacity. For ex-
ample, some species like Virola spp., Cabralea canjerana, Magnolia
ovata have low fecundities and high-quality, while Trema micrantha,
Schinus terebinthifolius or Alchornea glandulosa have high fecun-
dities and low-quality (see e.g. Pizo, 1997 for Cabralea; Cazetta,
Schaefer, & Galetti, 2008 for Schinus). However, some of our results
do not support The Paradigm. First is that our study assemblage
is mainly composed by frugivores with a strong reliance on fruit
food and less so by opportunistic species; only thruses, tityrids and
tanangers may depend on other food resources, yet they are still
much more dependent on fruits than more opportunistic species
like the tyranids or finches (Wilman et al., 2014). Second, we still
have a bottom-left region in the effectiveness landscape (Figure 3)
of medium-poor quality and barely consumed fruits that are not ex-
plained by the paradigm. The plants with these characteristics fall
in between the two extremes, forming a cloud of plant species with
varied dispersal strategies (also see Rother et al., 2016 for analysis
of the quantity component of SDE).

4.2 | Factors influencing RPE variability

Several factors shape and influence the outcomes of seed disper-
sal interactions (Schupp, Jordano, & Gémez, 2010). These factors
can be categorized into following three types: morphological con-
straints such as beak-fruit size matching, manipulation effort, fruit
position and accessibility; chemical constraints such as pulp nutrient
composition, secondary compounds and physiological limitations;
and context-dependent factors that comprise spatial, temporal and
community-composition scenarios. While some of the effects may
affect the quantity component (mainly fruit size and the context-
dependent factors), those more related to intrinsic characteristics
of the fruit affect the quality component can also affect both RPE
components synergistically.

Morphological traits such as fruit and seed size affect fruits’ RPE.
The ability to efficiently consume and disperse large-seeded species
is usually restricted to the large-bodied disperser species (Galetti
et al., 2013; Jordano, 2013; Levey, 1987). Thus, fruit and seed size
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act as a primary filter for dispersers, yet avian species are also capa-
ble of consuming bigger fruits than their gape size by plucking on its
pulp, known as mashers (Levey, 1987). This explains why in our study
we have recorded many frugivores consuming bigger seeds than the
gape sizes, for example Thraupis spp. feeding on Virola fruits and
Euphonia spp. on Protium heptaphyllum. Furthermore, other factors
such as fruit protection and accessibility may also act as deterrents
for fruit consumption by some avian species (Denslow & Moermond,
1982; Pratt & Stiles, 1985).

Nutrient composition is variable among fruit species, and this
triggers frugivore preferences for specific fruit nutritional contents
(Cazetta, Galetti, Rezende, & Schaefer, 2012; Jordano, 2013). Lipids
are one of the most variable nutrients in fruit pulp (Moermond &
Denslow, 1985; Stiles, 1993), and are known to covary negatively
with carbohydrate content (Herrera, 1987; Jordano, 1995, 2013;
Valido, Schaefer, & Jordano, 2011; Witmer & Van Soest, 1998). Birds
that mix their diets with insect and other lipid-rich sources have
a better facility to absorb and assimilate lipid-rich fruits (White &
Stiles, 1990); therefore, they prefer these fruit types. In contrast,
strictly frugivorous species seem to prefer carbohydrate-rich fruit
species with high watery content that acts as nutrient solvent and
facilitates assimilation (Levey & Martinez del Rio, 2001). We expect
that many of the instances of low RPE scoring in the bottom-left cor-
ner of the RPE landscape are thus associated with partial or sporadic
consumption of fruits by avian species with mixed diets. Yet low RPE
values for a particular fruit may be also due to those instances of size
misfitting or fruit-use yielding suboptimal foraging conditions for the
frugivores (i.e. ‘pulp theft’, accessibility constraints, etc.).

Highly frugivorous species also tend to complement their diet
with different fruit species to balance the nutrient intake (Jordano,
1987, 1988; Levey & Karasov, 1989; Witmer & Van Soest, 1998).
Secondary metabolites are tightly related in frugivore-fruit interac-
tions. These compounds have been proposed to be involved in sev-
eral frugivory processes, acting as attractors, repulsors, mediators in
gut retention time or intoxicators (Cipollini & Levey, 1997; Herrera,
1982). Regardless of the reason, secondary compounds in the pulp
are believed to limit fruit ingestion through deterrent means (Izhaki
& Safriel, 1989; Jordano, 2013). These negative effects of secondary
compounds could explain why highly nutritious fruits are consumed
less frequently. Following this proposition, it would be interesting to
see the relation between energetic content or fruit size with second-
ary metabolites. Our RPE model also serves as a basis to test hy-
potheses based on differential preferences of frugivores and test if
variable consumption rates of the same fruits are related to different
nutrient composition or variable tolerance to secondary compounds.
We expect heavily defended fruits to lie on the left sector of the RPE
landscape due to a ‘minoring’ consumption pattern by frugivores
(Jordano, 1988; Snow & Snow, 1988), with reduced but consistent
consumption of small amounts of pulp in the frugivore's diet. This is a
consumption pattern expected for fruit species contributing specific
micronutrients or elements to the frugivore's diet (Jordano, 1988),
in which case the location on the RPE landscape would be at the

left-bottom corner.

In the Supporting Information we have shown how to improve
RPE, including a preliminary analysis using fruit digestibility to
refine the quality component. All individual pairwise interactions
showed RPE values affected to variable extents when assessing
digestibility. The energy assimilation measures used must be in-
terpreted cautiously because digestive efficiency may depend
on several factors such as gut transit time, food ingestion rate or
differential enzymatic activities (Karasov, 1990; Levey & Martinez
del Rio, 2001; Worthington, 1989). However, despite the data
used being limited, with these preliminary analyses we highlight
the importance of including digestibility assimilation in RPE mod-
els. Their inclusion in effectiveness landscapes can re-scale the
quality component for the different fruits and may facilitate the
understanding of specific frugivore preferences. A deeper explo-
ration of digestibility capabilities would be required to look at in-
traspecific variation among fruit species and the foraging ecology

of the frugivore consumers.

4.3 | Phylogenetic trends in RPE

So far, differences in fruit effectiveness have proven to be more
related to intrinsic characteristics of the fruit itself than to those
of the frugivore consuming it, and the correlation result between
RPE; and frugivore-specific RPE supports this. A species-specific
signal in RPE variation suggests a sizeable phylogenetic com-
ponent of variation, so that closely related fruit species tend to
show similar values, irrespective of the specific interactions with
frugivores. However, our analysis revealed that only the subcom-
ponent ‘fruit-specific energy’ had significant phylogenetic signal,
this being consistent with results previously reported in compara-
tive analyses (Cazetta et al., 2012; Jordano, 1995; Valido et al.,
2011). Despite the imprecise branch length calculation method
and the reduced sample of phylogenetic diversity of fruits, our
results suggest that the sampling has been adequate, reflecting
reasonably well the existing phylogenetic diversity of the Atlantic
rainforest fleshy-fruited species. The missing phylogenetic signal
in RPET probably emerges from extreme variation in the quantity
component that is dependent on, for example local variation in
interaction frequency; just this effect might be blurring any phy-
logenetic imprint of the quality component (Carnicer, Jordano, &
Melian, 2009).

Most seed dispersal systems are usually generalized and asymmet-
ric, that is most species are visited by several frugivores (Blithgen,
Menzel, Hovestadt, Fiala, & Blithgen, 2007; Howe, 2016; but see
Guaraldo, Boeni, & Pizo, 2013). Several constraints operating against
tight coevolution of high specificity have been already discussed in
diverse studies (Herrera, 1986; Jordano, 1995; Wheelwright & Orians,
1982). Our results support the existence of phylogenetic constraints
due to just pulp energy content that may limit among-species variation
in RPE. Yet, the effect of interaction with a highly diversified frugiv-
ore assemblage appears to release these constraints and result in RPE

variation not closely tied to the patterns of shared ancestry. Despite
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phylogenetic constraints, RPE has an ample margin for fruit effec-
tiveness to independently vary in seed dispersal systems. This might
explain the ample scatter of RPE values among frugivores, even for
the same fruit species. In addition, this is consistent with the frequent
field observation of weak pairwise interactions, where RPE values
for the frugivore do not match the resulting SDE values for the plant
(Jordano, 2013).

4.4 | Future perspectives

A potentially interesting field to be explored is the arrangement of
the RPE landscape along a time window, that is, to test how changes
in fruiting phenology affect the effectiveness of specific frugivores
or the combinations of RPE values that occur seasonally. Because
fruit availability determines shifts in frugivore diet (Loiselle & Blake,
1999) it is expected that fruit effectiveness will vary too. Using
RPE landscapes will allow the visualization of seasonal changes in
distributional patterns of fruit effectiveness (see Culot, Huynen, &
Heymann, 2015; Pizo & Camargo, 2018).

Comparisons not only need to be performed from the ‘zoocen-
tric’ point of view. A further ambitious objective is the comparison
of RPE landscapes with SDE landscapes (Schupp et al., 2017). By
looking at both mutualistic approaches we can better understand
the dependencies and the tightness of fruit-frugivore links within
multispecies mutualistic networks. Finally, RPEs can be applied in
decision-making for conservation purposes, helping to develop more
complete management strategies by identifying core groups of plant

species within diversified plant-frugivore assemblages.

5 | CONCLUSIONS

The RPE model has been shown to be a useful tool for under-
standing the overlooked frugivore perspective in analyses of SDE,
significantly expanding the conceptual breadth of the SDE frame-
work (Schupp et al., 2017). Our study provides a preliminary foun-
dation for future studies trying to address similar questions. The
approach also offers the possibility to better understand the eco-
logical fundamentals that generate mutual dependence between
species partners, as well as the stability and maintenance of their

interactions in time.
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Table S1. List of bird species studied, taxonomic affiliation, size, body mass and gape size

(Data source: Bello et al., 2017).

Species Family Common name Size Body mass (g) Gape size(mm)
Penelope obscura Cracidae Dusky-legged Guan Large 1770.00 22.35
Aburria jacutinga Cracidae Jacutinga Large 1250.00 19.12
Ramphastos vitellinus Ramphastidae Channel-billed tucan Large 343.50 30.11
Ramphastos dicolorus Ramphastidae Green-billed toucan Large 331.00 30.10
Procnias nudicollis Cotingidae Bare-throated bellbird Medium 200.00 23.61
Selenidera maculirostris Ramphastidae Spot-billed toucanet Medium 164.00 25.04
Baillonius bailloni Ramphastidae Saffron toucanet Medium 146.00 23.60
Trogon viridis Trogonidae Green-backed trogon Medium 89.70 20.49
Trogon surrucura Trogonidae Surucua trogon Medium 73.30 17.52
Turdus rufiventris Turdidae Rufous-bellied thrush Small 69.50 13.25
Tityra cayana Tityridae Black-tailed tytyra Small 68.10 16.57
Turdus albicollis Turdidae White-necked thrush Small 54.00 11.15
Thraupis palmarum Thraupidae Palm tanager Small 39.00 8.28
Thraupis sayaca Thraupidae Sayaca tanager Small 32.50 8.92
Tangara seledon Thraupidae Green-headed tanager Small 18.70 6.12
Tangara cyanocephala  Thraupidae Red-necked tanager Small 18.00 5.17
Euphonia violacea Fringillidae Euphonia violacea Small 15.00 6.92

Euphonia chlorotica Fringillidae Purple-throated euphonia  Small 11.00 6.15




Table S2. List of the six plant species where the Pulp Dry Mass values (grams) were
estimated using species-specific data, where FFM is Fruit Fresh Mass in g, pPFM is the
proportion of pulp fresh mass, w% indicates water percentage of the fruit and SFM is the

Seed Fresh Mass. Multiplication sign is represented as ‘X’.

Plant species Value (g) Calculation method
Acnistus arborescens 0.026 FFM x pPFM x (1-w%)
Alchornea glandulosa 0.018 PFM x (1-w%)
Citharexylum myriantum 0.133 PFM x (1-w%)
Copaifera langsdorffii 0.081 FFM x pPFM x (1-w%)
Cupania oblongifolia 0.132 (FFM-SFM) x (1-w%)

Virola oleifera 0.407 PFM x (1-w%)




Table S3. List of data imputed for 9 plant species using congeners data. Where pPFM is
the proportion of Pulp Fresh Mass, pPDM is the proportion of Pulp Dry Mass, pPROT is
proportion of Protein content, pNSC is the proportion of Non-Structural Carbohydrates,

PDM is the Pulp Dry Mass (g) and Energy is the specific energy given in kdJ g™.

. Data .

Plant species imputed Value Congener species used

Alchornea triplinervia pPFM 0.381 Alchornea glandulosa

Cecropia glaziovii pPDM 0.080 Cecropia pachystachia

Sloanea guinaensis pPDM 0.610 Sloanea monosperma

Myrsine coriacea pPROT 0.046 + 0.012 Mean of 5 Myrsine spp (gardneriana, parviflora, rubra,
umbellata, venosa)
M f 4 Nectand . (davidsoni tlej

Nectandra megapotamica  pNSC 0.199+0.058 oo © i (davidsoniana, gentle,
hypoglauca, salicina)

PDM 0.007 + 0.004 Mean of 3 Phoradendron spp (hexastichum,

. inaequidentatum, robustissimum)
Phoradendron affine . . . .
Mean of 4 Phoradendron spp. (californicum, jenmanii,

serotimun, sp1.)
PDM 0.007 + 0.004 Mean c'>f 3 Phoradendron'sp'p (hexastichum,
Phoradendron inaequidentatum, robustissimum)

Energy 21.045 +2.729

crassifolium b } i 1 i
if EeT 21.045 + 2.729 Mean' of 4 Phoradendron spp. (californicum, jenmanii,
serotimun, sp1.)

Mean of 3 Phoradendron spp (hexastichum,

PDM 0.007 £ 0.004 . . o
inaequidentatum, robustissimum)

Phoradendron piperoides
pip Mean of 4 Phoradendron spp. (californicum, jenmanii,

+
Energy 21.045 +2.729 serotimun, sp1.)

Mean of 17 Miconia spp (valtheri, tristis, theaezans,
sellowiana, rigidiuscula, racemifera, pusilliflora,
latecrenata, incospicua, doriana, discolor, cubatanensis,
cabucu, budlejoides, bipulifera, sp1. sp2.)

pPDM 0.067 £ 0.079
Miconia prasina

pNSC 0.744 £ 0.070 Mean of 2 Miconia spp (bipulifera and sp1.)




Table S4. List of plant species indicating the Carbohydrates measurement that was used
to calculate the fruit Specific Energy. Where NSC is the proportion of Non-Structural

Carbohydrates, TC is the proportion of Total Carbohydrates and TSUG is the proportion of

Total Sugar.
Plant species Family Carbohydrates value used
Acnistus arborescens Solanaceae NSC
Eugenia uniflora Myrtaceae NSC
Ficus benjamina Moraceae NSC
Miconia prasina Melastomataceae NSC
Nectandra megapotamica Lauraceae NSC
Schefflera morototoni Araliaceae NSC
Tapirira guianensis Anacardiaceae NSC
Virola sebifera Myristicaceae NSC
Phoradendron affine Santalaceae NSC
Phoradendron crassifolium  Santalaceae NSC
Phoradendron piperoides Santalaceae NSC
Alchornea glandulosa Euphorbiaceae TC
Alchornea triplinervia Euphorbiaceae TC
Cabralea canjerana Meliaceae TC
Cecropia pachystachya Urticaceae TC
Citharexylum myrianthum Verbenaceae TC
Copaifera langsdorffii Fabaceae TC
Cupania oblongifolia Sapindaceae TC
Erythroxylum ambiguum Erythroxylaceae TC
Euterpe edulis Arecaceae TC
Sloanea guianensis Elaeocarpaceae TC
Sorocea ilicifolia Moraceae TC
Virola oleifera Myristicaceae TC
Cecropia glaziovii Urticaceae TSUG
Eugenia umbelliflora Myrtaceae TSUG
Magnolia ovata Magnoliaceae TSUG
Miconia pusilliflora Melastomataceae TSUG
Myrsine coriacea Primulaceae TSUG
Myrsine gardneria Primulaceae TSUG
Myrsine umbellata Primulaceae TSUG
Ocotea pulchella Lauraceae TSUG
Protium heptaphyllum Burseraceae TSUG
Schinus terebinthifolius Anacardiaceae TSUG
Trema micrantha Cannabaceae TSUG
Virola bicuhyba Myristicaceae TSUG
Vitex polygama Lamiaceae TSUG



Table S5. Experimental digestibility results for the 4 bird species studied. Columns show

bird and plant species used, apparent digestibility mean values ( +1SE), the number of

digestibility replicate estimates (n), the energy per fruit in KJ, the quantity component, the

quality component (defined as Energy x Digestibility), RPE (RPE= Quantity Component x

Energy) and the RPEq value including digestibility estimates (RPEq4= Quantity Component

x Quality Component).

Frugivore species Fruit consumed n Digestibilty Energy QualityC QuantityC RPE RPEq

Ramphastos Cecropia 5 0.180.06 508 093:0.29 0.022:0.021 011 0.02

dicolorus glaziovii

Ramphastos toco  Euterpe edulis 9 0.31£0.09 5.18 1.62+0.43 0.043+0.010 0.22 0.07
. Trema

Thraupis sayaca . 2 0.70+0.07 0.11 0.08+0.01 2.725+2.267 0.31 0.22

micrantha
Turdus Trema 3 0.60:0.09 011 0.07:0.01 11.15 127 0.76

leucomelas micrantha




SUPPLEMENTARY MATERIAL

Figure S1. Map of Brazil indicating with yellow dots the location of the study sites from the

bibliography. The Atlantic rainforest biome distribution is represented by the shadowed area.
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Figure S2. Correlation plot of avian body mass and fruit mass ingested per visit for 541 observed

interactions. Both variables log-transformed. Pearson’s correlation is 0.588, df=354, n = 18 frugivore

species.
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Figure S3.1. RPE landscape for Cracidae species: Aburria jacutinga and Penelope obscura. In order
to avoid losing information for Cracidae species, it is the only case for which we created an
effectiveness landscape using the estimated number of fruits per visit as the only subcomponent in
the quantity axis.
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Figure S3.2. RPE landscape for Ramphastidae, big toucans species

Ramphastos vitellinus.
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Figure S3.3. RPE landscape for Ramphastidae, toucanet species: Baillonius bailloni and Selenidera

maculirostris.
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ure S3.4. RPE landscape for Trogonidae species: Trogon surrucura and Trogon viridis.
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Figure S3.5. RPE landscape for Cotingidae and Tityridae species: Procnias nudicollis and Tityra

cayana.
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Figure S3.6. RPE landscape for the Turdidae species Turdus rufiventris.
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Figure S3.7. RPE landscape for the Turdidae species Turdus albicollis.
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Figure S3.8. RPE landscape for the Thraupidae species Thraupis sayaca.
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Figure S3.9. RPE landscape for the Thraupidae species Thraupis palmarum.
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Figure S3.10. RPE landscape for Thraupidae species
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Figure S3.11. RPE landscape for Fringillidae species: Euphonia chlorotica and Euphonia pectoralis.
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Figure S4. Phylogenetic arrangement of the 34 plant species studied using Phylomatic R package.
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Table S1. List of bird species studied, taxonomic affiliation, size, body mass and gape size (Data

source: Bello et al., 2017).

Species Family Common name Size m2::¥g) sii?;em)
Penelope obscura Cracidae Dusky-legged Guan Large 1770.00 22.35
Aburria jacutinga Cracidae Jacutinga Large 1250.00 19.12
Ramphastos vitellinus Ramphastidae Channel-billed tucan Large 343.50 30.11
Ramphastos dicolorus Ramphastidae Green-billed toucan Large 331.00 30.10
Procnias nudicollis Cotingidae E:lrlﬁi-:groated Medium 200.00 23.61
Selenidera maculirostris Ramphastidae Spot-billed toucanet  Medium 164.00 25.04
Baillonius bailloni Ramphastidae Saffron toucanet Medium 146.00 23.60
Trogon viridis Trogonidae Green-backed trogon Medium 89.70 20.49
Trogon surrucura Trogonidae Surucua trogon Medium 73.30 17.52
Turdus rufiventris Turdidae Rufous-bellied thrush  Small 69.50 13.25
Tityra cayana Tityridae Black-tailed tytyra Small 68.10 16.57
Turdus albicollis Turdidae White-necked thrush  Small 54.00 11.15
Thraupis palmarum Thraupidae Palm tanager Small 39.00 8.28
Thraupis sayaca Thraupidae Sayaca tanager Small 32.50 8.92
Tangara seledon Thraupidae t(;rneaegne-readed Small 18.70 6.12
Tangara cyanocephala  Thraupidae Red-necked tanager Small 18.00 5.17
Euphonia violacea Fringillidae Euphonia violacea Small 15.00 6.92
Euphonia chlorotica Fringillidae AUljO e Small 11.00 6.15

euphonia




Table S2. List of the 6 species where the Pulp Dry Mass values (grams) were estimated using

species-specific data; where FFM is Fruit Fresh Mass in g, pPFM is the proportion of pulp fresh

mass, W% indicates water percentage of the fruit and SFM is the Seed Fresh Mass. Multiplication

sign is represented as ‘X’.

Plant species Value (g) Calculation method
Acnistus arborescens 0.026 FFM x pPFM x (1-w%)
Alchornea glandulosa 0.018 PFM x (1-w%)
Citharexylum myriantum 0.133 PFM x (1-w%)
Copaifera langsdorffii 0.081 FFM x pPFM x (1-w%)
Cupania oblongifolia 0.132 (FFM-SFM) x (1-w%)
Virola oleifera 0.407 PFM x (1-w%)

Table S3. List of data imputed for 9 plant species using congeneric species data. Where pPFM is the

proportion of Pulp Fresh Mass, pPDM is the proportion of Pulp Dry Mass, pPROT is proportion of

Protein content, pNSC is the proportion of Non-Structural Carbohydrates, PDM is the Pulp Dry Mass

(9) and Energy is the specific energy given in kd g-1. Values are represented with + 1SE when

possible.
Plant species Data Value Congener species used
imputed
Alchornea triplinervia pPFM 0.381 Alchornea glandulosa
Cecropia glaziovii pPDM 0.080 Cecropia pachystachia
Sloanea guinaensis pPDM 0.610 Sloanea monosperma
Myrsine coriacea PPROT 0046 +0.012 'Mean of 5 Myrsine spp (gardneriana,
parviflora, rubra, umbellata, venosa)
Nectandra _ oNSC 0.199 + 0.058 Mean (_)f 4 Nectandra Spp- (davidsoniana,
megapotamica gentlei, hypoglauca, salicina)
PDM 0.007 + 0.004 Mean qf 3 Phoradendror? spp (hexastichum,
) inaequidentatum, robustissimum)
Phoradendron affine o
Mean of 4 Phoradendron spp. (californicum,
Energy 21.045+2.729 . . .
jenmanii, serotimun, sp1.)
PDM 0.007 + 0.004 Mean qf 3 Phoradendror? SspPp (hexastichum,
Phoradendron inaequidentatum, robustissimum)
crassifolium Energy  21.045 +2.729 Mean of_4 Phoradendron spp. (californicum,
jenmanii, serotimun, sp1.)
PDM 0.007 + 0.004 Mean qf 3 Phoradendror? spPp (hexastichum,
Phoradendron inaequidentatum, robustissimum)
piperoides Energy  21.045 +2.729 Mean of_4 Phoradendron spp. (californicum,
jenmanii, serotimun, sp1.)
Mean of 17 Miconia spp (valtheri, tristis,
theaezans, sellowiana, rigidiuscula,
o ] pPDM 0.678 £0.079 racemifera, pusilliflora, latecrenata,
Miconia prasina incospicua, doriana, discolor, cubatanensis,
cabucu, budlejoides, bipulifera, sp1. sp2.)
pNSC 0.744 +0.070 Mean of 2 Miconia spp (bipulifera and sp1.)




Table S4. List of plant species indicating the Carbohydrates measurement that was used to calculate
the fruit Specific Energy. Where NSC is the proportion of Non-Structural Carbohydrates, TC is the
proportion of Total Carbohydrates and TSUG is the proportion of Total Sugar.

Plant species Family Carbohydrates value used
Acnistus arborescens Solanaceae NSC
Eugenia uniflora Myrtaceae NSC
Ficus benjamina Moraceae NSC
Miconia prasina Melastomataceae NSC
Nectandra megapotamica Lauraceae NSC
Schefflera morototoni Araliaceae NSC
Tapirira guianensis Anacardiaceae NSC
Virola sebifera Myristicaceae NSC
Phoradendron affine Santalaceae NSC
Phoradendron crassifolium  Santalaceae NSC
Phoradendron piperoides Santalaceae NSC
Alchornea glandulosa Euphorbiaceae TC
Alchornea triplinervia Euphorbiaceae TC
Cabralea canjerana Meliaceae TC
Cecropia pachystachya Urticaceae TC
Citharexylum myrianthum Verbenaceae TC
Copaifera langsdorffii Fabaceae TC
Cupania oblongifolia Sapindaceae TC
Erythroxylum ambiguum Erythroxylaceae TC
Euterpe edulis Arecaceae TC
Sloanea guianensis Elaeocarpaceae TC
Sorocea ilicifolia Moraceae TC
Virola oleifera Myristicaceae TC
Cecropia glaziovii Urticaceae TSUG
Eugenia umbelliflora Myrtaceae TSUG
Magnolia ovata Magnoliaceae TSUG
Miconia pusilliflora Melastomataceae TSUG
Myrsine coriacea Primulaceae TSUG
Myrsine gardneria Primulaceae TSUG
Myrsine umbellata Primulaceae TSUG
Ocotea pulchella Lauraceae TSUG
Protium heptaphyllum Burseraceae TSUG
Schinus terebinthifolius Anacardiaceae TSUG
Trema micrantha Cannabaceae TSUG
Virola bicuhyba Myristicaceae TSUG
Vitex polygama Lamiaceae TSUG




Supplement 1. Model refinement, with digestibility experiments.

With the aim of improving the model and refine the estimates of effectiveness, we
performed preliminary analysis including digestibility in the quality component. We
conducted feeding experiments with four birds species in order to asses their digestibility
with different fruits.

Trials were conducted with three toco toucans (Ramphastos toco) and one green-billed
toucan (Ramphastos vitellinus) at the Piracicaba Municipal Zoo, in Piracicaba, Sao Paulo.
The birds were offered Euterpe edulis and Cecropia pachystachya fruits respectively.
Animals were starved overnight and given free access to water. Experiments lasted 1 to 2
hours, starting around 9:00AM and finishing at 11:00AM. Force-feeding experiments were
also conducted with two frugivorous birds (Thraupis sayaca and Turdus leucomelas)
captured with mist nets operated in the UNESP campus of Rio Claro, Sao Paulo. Fruits of
Trema micrantha were force-fed to the birds, to ensure swallowing and total ingestion.
Individual birds were kept in cloth bags and periodically checked until feces were found,
and then released.

A precision balance was used to obtain the fruit mass before the offering and after the
ingestion event in case it was not complete; this was considered as the ingested mass (IM).
After the end of the experiment, feces were collected and weighed, this is referred as the
excreted mass (EM). For Euterpe edulis fruits, the mass of regurgitated seeds (SM) was also
included in the excreted material. The apparent fruit pulp digestibility formula used in this
study was adapted from the apparent assimilation efficiency formulas frequently used in
physiological avian studies (Worthington, 1989; Karasov, 1990; Brown & Downs, 2003). The
apparent pulp digestibility was calculated using an apparent digestibility coefficient:

A tdigestibility coefficient M - EM

aren tgestiotli coejjicient = —————
pp 8 y M — SM
Apparent pulp digestibility is defined as the absorbed pulp mass (i.e. ingested mass minus
the excreted mass), divided by the total pulp mass (i.e. ingested fruit mass minus the seed

mass), providing a raw estimation of energy assimilation.

Ramphastos toco and Turdus leucomelas had no available information to calculate the
quantity component, so we resorted to quantitative data on fruit consumption for their close

congeneric species R. dicolorus and T. rufiventris.



Table S5. Experimental digestibility results for the 4 bird species studied. Columns show bird and
plant species used, the number of digestibility replicate estimates (n), apparent digestibility mean
values (+ 1SE), the energy per fruit in KJ, the quantity component, the quality component (defined as
Energy x Digestibility), RPE (RPE= Quantity Component x Energy) and the RPEq value including
digestibility estimates (RPEq= Quantity Component x Quality Component).

:;?:Ii‘é:re Fruitconsumed n Digestibilty Energy QualityC QuantityC RPE RPEq
Ramphastos . -
dicolorus Cecropia glaziovii 5 0.18+0.06 5,08 0.93x0.29 0.022+0.021 0,11 0,02

Ramphastos toco  Euterpe edulis 9 0.31+0.09 5,18 1.62+0.43 0.043+0.010 0,22 0,07

Thraupis sayaca  Trema micrantha 2 0.70+0.07 0,11 0.08+0.01 2.725+2.267 0,31 0,22

Turdus

Trema micranth .60=0. 11 .07+0.01 11,1 1,27 7
leucomelas ema antha 3 0.60+0.09 0, 0.07+0.0 15 , 0,76
.44\.
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Digestibility data

Figure S5. Graph representing RPE changes when using data on fruit apparent digestibility
determined experimentally. Each point color represents the RPE of single frugivore-fruit
interaction including (YES) and not including (NO) digestibility data. The RPE values decrease
when including apparent nutrient absorption data of each frugivore species. For those species
that do not coincide with the ones selected in the study, the Quantity component has been

estimated from its closest congeneric species.



Apparent nutrient absorption values obtained for the frugivores tested were varied (see
Table S5). When total RPE was recalculated using these digestibility data (RPEd), all RPEq
values decreased (Fig. S5). Individual pairwise interactions were affected differentially in
degree of magnitude, being the impact on the RPE higher for some than for others. Turdus
leucomelas was the most affected in absolute terms by the reduction of the effectiveness
value, this occurred because it obtained a very high quantity component score, which in
turn made the total effectiveness of the fruit more susceptible to any minor change in the
quality component. Yet, toucan species were the most affected in relative terms by
refinement of the quality component, having their RPE reduced by more than half.

This results, yet raw and scarce, highlight the importance of including digestibility
assimilation on RPE models. Their inclusion in effectiveness landscapes can re-scale the
quality component for the different fruits and may facilitate the understanding of specific
preferences of frugivores. Additionally, it will illustrate variation in digestibility, if any, of the
same fruit species for different frugivores in the RPEr landscape.
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