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Abstract. Despite a strong current interest in ecological networks, the bulk of studies are
static descriptions of the structure of networks, and very few analyze their temporal dynamics.
Yet, understanding network dynamics is important in order to relate network patterns to
ecological processes. We studied the day-to-day dynamics of an arctic pollination interaction
network over two consecutive seasons. First, we found that new species entering the network
tend to interact with already well-connected species, although there are deviations from this
trend due, for example, to morphological mismatching between plant and pollinator traits and
nonoverlapping phenophases of plant and pollinator species. Thus, temporal dynamics
provides a mechanistic explanation for previously reported network patterns such as the
heterogeneous distribution of number of interactions across species. Second, we looked for the
ecological properties most likely to be mediating this dynamical process and found that both
abundance and phenophase length were important determinants of the number of links per
species.
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INTRODUCTION

During the last couple of decades, pollination ecology

at community level has attracted a lot of attention

(Jordano 1987, Waser et al. 1996, Waser and Ollerton

2006). More recently, general network theory has

provided a new framework to describe and quantify

interactions in species-rich pollination networks (Olesen

and Jordano 2002, Bascompte et al. 2003, 2006, Jordano

et al. 2003, 2006, Vázquez and Aizen 2004, Thompson

2005, Olesen et al. 2006, Rezende et al. 2007). In a

pollination network, an animal species is linked to a

plant species if the animal visits the flowers of the plant.

These and other studies point toward invariant network

patterns across network size, habitat, and geography.

However, barely anything is known about the temporal

dynamics of pollination networks. Earlier, food-web

ecology experienced similar shortcomings regarding

temporal resolution, and the methodology of this

research field received serious critique (e.g., Polis 1991).

A few studies explore the temporal dynamics of

pollination networks (e.g., Petanidou 1991 [and later

analyses of her data set], Medan et al. 2002, 2006,

Lundgren and Olesen 2005, Basilio et al. 2006, Kaiser

2006), and all conclude that several variables have

strong temporal dynamics, e.g., species number, species

linkage level (number of links of a species to other

species), total number of links in the network, network

connectance, and nestedness. Connectance is the num-

ber of observed links divided by the total number of

potential links between all species of plants and animals.

Nestedness is a nonrandom link pattern describing the

degree to which links of specialized species are proper

subsets of those of more generalized species. However,

these studies only show the variability of single

variables; none describes the temporal dynamics of the

entire network structure (however, see Nielsen and

Bascompte 2007).

Here we studied a taxonomically, fully resolved arctic

pollination network, characterized by a strong season-

ality. We analyzed daily over two seasons (of two years)

the mechanism of assembly or attachment of new species

(i.e., species that initiated flowering or began active

foraging) to old species already established in the

network. To understand the formation of network

patterns, theoreticians have developed a family of

models of network buildup (Cohen and Newman 1985,

Barabási et al. 1999, Williams and Martinez 2000,

Sugihara et al. 2003, Cattin et al. 2004). One of these

models is preferential attachment (Barabási et al. 1999).

According to this model, a new species is more likely to

link to a species that already has many links in the

network (‘‘the rich-get-richer’’ principle). It is one of

several ways of generating a scale-free network (for

other mechanisms, see e.g., the two-level model by

Dangalchev [2004]). Some of the main ecological factors

behind preferential attachment, leading to scale-free

networks, are expected to be species abundance and

phenology, and we analyze how they correlate with

Manuscript received 15 March 2007; revised 2 October 2007;
accepted 5 October 2007. Corresponding Editor: M. D.
Eubanks.

4 E-mail: jens.olesen@biology.au.dk

1573



species linkage level. Finally, we discuss a set of factors

constraining preferential attachment.

MATERIALS AND METHODS

The pollination network

We studied an arctic pollination network in which a

strong component of temporal dynamics was expected,

i.e., with a marked species turnover during the short

arctic season. The turnover was caused by the temporal

sequence of phenophases of plant flowering and

pollinator activity. All flower visitors were termed

pollinators. The phenophase of a plant species is the

time period since the first individual of the species

initiates flowering and until the last individual ceases to

flower. In the same way, the phenophase of a pollinator

species is the time since the first individual of the species

is observed in a flower and until the last individual is

seen visiting a flower.

The study site was a 500 3 500 m plot of heathland,

old riverbanks, and snow beds near the Zackenberg

Research Station, northeastern Greenland (748300 N,

218000 W); and the study period included two full

seasons, i.e., from the last snow melted to the first

snowfall (43 and 69 days in 1996 and 1997, respectively).

However, bad weather reduced the number of observa-

tion days to 25 for each year. Flowering abundance of a

species was scored as the number of 0.1-m2 plots, out of

30 random plots, containing flowering individuals of the

species (Fredskild and Mogensen 1997). Observations of

insect visitation to flowers were made at all flowering

plant species (�24 simultaneously flowering species) on

every day offering suitable activity conditions for

insects, i.e., on all sunny and calm days, from 09:00 to

17:00 hours. Each daily observation census per plant

species lasted a total of 40 min, i.e., a 20-min period at

each of two flowering individuals.

Because we estimated species linkage level daily, i.e.,

the number of pollinator species visiting a plant species

and vice versa (the number of plant species visited by a

pollinator), we did not use rarefaction curves to show

how the number of pollinator species changed with

sampling effort (e.g., Woodward et al. 2005b). Instead

we used the Jaccard similarity index (J ) to show how the

two individuals of a species differed in the composition

of their pollinator fauna (Krebs 1999). J was regressed

against plant species abundance and found to be

independent of abundance (first year: F1, 309 ¼ 0.96, P

, 0.33). We then concluded that no artefactual sampling

results could be alleged because of variation in

abundance, because rare and abundant plant species

showed similar differences among sampled pairs of

individuals. The choice of diurnal time of observation

census of individual plant species and observer was

random. Most Diptera and some Hymenoptera species

(especially within the Braconidae, Eulophidae, Ichneu-

monidae, and Megaspilidae) could not be identified in

the field and members of these two orders were sampled

for later identification. In total, 1245 or 21% of all

observed flower-visiting insect individuals were sampled.

Analysis of attachment of new species to the network

Regardless of their specific nature, all networks

consist of nodes interconnected by links. An important

characteristic of a node i is its linkage level Li, i.e., its

number of links to other nodes in the network.

Conventionally in network analysis (e.g., Barabási and
Albert 1999), the frequency distribution of L for all

nodes in the network is presented as the cumulative

probability P(�L) that a given node has L or more links.

Often, P(�L) follows a power law (;L�c ), i.e., it is

scale-free, which means that most nodes in the network
have a few links and a few nodes have many more links

than expected by chance. Being scale-free, properties of

the network are independent of its number of nodes.

Some ecological networks are reported to have P(�L)
with a flat tail leading to an exponential decay or a
truncation (e.g., P(�L) ; e�cL or ; L�c e�(L/Lx), with Lx

being a cut-off point). This means that beyond a certain

number of links, Lx, the decay is faster than that

described by a power law (Dunne et al. 2002, Jordano et

al. 2003).

We fitted power law, exponential, and truncated
power-law distributions to P(�L) using the R package

(R Development Core Team 2005; library brainwaver,

available online).5 We obtained the Akaike Information

Criterion (AIC) for each fit (R Development Core Team

2005). The model with lowest AIC was chosen as the
best fit to the observed P(�L). A scale-free network may

owe its origin to two simultaneous dynamic processes

(Barabási and Albert 1999): (1) continuous growth of

number of nodes and links (but see Dangalchev 2004),

and (2) preferential attachment of new nodes to already
well-connected nodes. However, other processes may

lead to scale-free networks as well (e.g., gene duplication

in genetic networks; Teichmann and Babu [2004]). Let

us call P(Li) the attachment probability of a new node

to an existing node with linkage level Li. Theoretical
studies show that the shape of the P(�L) distribution

depends on P(Li); that is, structure depends on

dynamics. A scale-free distribution seems only to appear

if P(Li) is a linear function of L (Barabási and Albert

1999, Krapivsky et al. 2000, Albert and Barabási 2002,
Dorogovtsev and Mendes 2004). Previous studies show

that preferential attachment takes place in both social

and technological networks (Redner 1998, Newman

2001, Jeong et al. 2003). However, as far as we know, no

study has investigated whether this is also the case for
ecological networks.

At every observation day t, we produced a network of

all links, i.e., observed flower visits, between its nodes,

i.e., plant and pollinator species, at least present at day t

(‘‘a time-slice network’’) and recorded linkage level L for

5 hhttp://cran.miscellaneousmirror.org/src/contrib/
Descriptions/brainwaver.htmli
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all species. Then we scored the number of new links that

each old pollinator species present at time t established

to new plant species recruited to the network from day t

to day t þ 1, and vice versa for links between old plant

species and new pollinator species. For every day during

the two seasons (of two years) this procedure was

repeated. We excluded the last days of each year when

the network stopped growing and also all time steps

when no new attachment took place. A total of 58

discrete time steps were left for our analysis of

attachment. Then for each time step and each old

species, we calculated the probability P(Li) (for a

calculation example, see Table 1). A link was assumed

to be constantly present from the first to the last day of

its observation, although it might only be observed on

some days during this time span. To reduce variation in

the data and to avoid zero bins, the cumulative

attachment probability j(�L) of an old species of

linkage level �L being linked to a new species was used

(Table 1; Jeong et al. 2003). We analyzed j(�L) as a

function of L using a procedure from general network

analysis (Albert and Barabási 2002, Jeong et al. 2003):

PðLiÞ } La
i

jð� LiÞ}
R

La
i dL}Laþ1

i

where a is a scaling exponent determining the type of

attachment dynamics and the subsequent linkage-level

distribution. If a ¼ 0, the attachment probability is

constant, i.e., independent of L, and this uniform

attachment leads to an exponential linkage-level distri-

bution P(�L) (Barabási et al. 1999). If a , 1, P(�L) is
either exponential or follows a truncated power law. If a
¼ 1, P(�L) becomes scale-free, and if a . 1, we get a

network in which one or a few super generalists connect

to almost all other species in the network, i.e., a star-

shaped network (Krapivsky et al. 2000).

RESULTS

Network structure

A matrix depicting links between all plant and

pollinator species over the two studied years is shown

in Fig. 1 (see also Plate 1). Most species had only a few

links, but a few generalists had many more links than

expected by chance, e.g., the fly Spilogona sanctipauli

(Muscidae) and the plant Dryas octopetala (Rosaceae).

Indeed, the bulk of all links in the network only involved

a small group of generalists. Table 2 presents network

parameter values for each year separately and for the

two years pooled. Most parameters were stable between

years in spite of the different length of the seasons. The

linkage-level distribution (two-year data combined) for

pollinators, P(�Li), had the best fit to a power-law

distribution (c ¼ 1.72), whereas P(�Lj) for plants had

the best fit to a truncated power law (c¼ 1.39, Lx¼ 13.9)

(Fig. 2). For the first year, the best fits were to a power

law for pollinators and to a truncated power law for

plants. In the second year, the best fits were to a

TABLE 1. An example showing how to calculate a (a scaling component determining attachment
dynamics and linkage-level distribution) for one time step, from the end of day 9 to the end of
day 11 in the first year for new plant species linking to old pollinator species (Li is the number of
links to pollinator species).

Pollinator species, i
Li, end
day 9

New flowering plant species
Li, end
day 11 P(Li) j(Li)Pot. rub. Ped. flam.

Bombus hyperboreus, B. polaris 1 0 0 1 0.00 0.00
Nysius groenlandicus 1 1 0 2 0.11 0.11
Parasyrphus tarsatus 2 0 0 2 0.00 0.11
Phaonia bidentata 2 0 0 2 0.00 0.11
Rhamphomyia filicauda 2 1 0 3 0.11 0.22
Aedes impiger 3 1 0 4 0.11 0.33
Colias hecla 3 0 0 3 0.00 0.33
Platycheirus lundbecki 3 1 0 4 0.11 0.44
Smittia spp. 4 0 0 4 0.00 0.44
Aedes nigripes 5 1 0 6 0.11 0.56
Limnophyes brachytomus 5 1 1 7 0.22 0.78
Paraphaenocladius sp. 5 1 0 6 0.11 0.89
Clossiana chariclea 6 0 0 6 0.00 0.89
Spilogona sanctipauli 6 1 0 7 0.11 1.00

Total 8 1 1.00

Notes: On day 10, no observations were made because of bad weather. ‘‘Old’’ means the
pollinator species entered the network at day 9 or earlier. During this time step, Potentilla
rubricaulis (Pot. rub.) and Pedicularis flammea (Ped. flam.) began flowering and became linked,
respectively, to eight and to one old pollinator species, for a total of nine new links. An old
pollinator species might get 0, 1, or 2 new links or a proportion of 0.00, 0.11, or 0.22 of all links. We
call these proportions observed attachment probabilities, P(L). j(Li)’s are cumulative values of
P(Li) (see Materials and methods: Analysis of attachment of new species to the network); ln(j(�Li))
was linearly regressed against ln(Li (day 9)), the slope being a þ 1 (here a ¼ 0.42) (Fig. 4b). Zero
values of j(Li) were excluded from the regression analysis (here, for Bombus hyperboreus, j(LB.h.)¼
0). In our analysis, data points were species and not linkage-level classes. Using the latter instead
did not significantly change the average a value.
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truncated power law for both pollinators and plants. To

understand which ecological processes might explain

these network patterns, we next looked at the dynamics

of the network and the ecological factors that were

expected to correlate best with these dynamics, namely,

phenophase length and local abundance.

Network dynamics

The parameter stability seen in Table 2 hid much

between-year dynamics. Thus 20% of the pollinator

species seen during the first year were not observed in

the second year, whereas 23% of the second-year

pollinator species were not observed in the first year.

Link dynamics were even more dramatic: 66% of the

links observed in the first year were not observed in the

second year, whereas 63% of the links present in the

second year were not seen in the previous year.

However, species number and composition of the plant

community were the same for the two years. Thus, while

network structure seemed stable at a ‘‘global’’ scale, the

identity and composition of links and species were quite

dynamic.

The frequency distributions of phenophase length had

a lognormal shape, except for plants in the second year,

where the distribution was normal. A cartoon of daily

interaction matrices from six days in the first season

(Fig. 3) illustrates the marked seasonality of the

interaction dynamics, i.e., the increase in network

complexity through time over a maximum peak to the

abrupt collapse at the end of the season. This temporal

variation in interaction complexity was generated from

the temporal turnover of phenophases, varying consid-

erably in their extent.

The linkage level of a species was positively correlated

(linear regression) with the length of its phenophase

(first-year pollinators, R2 ¼ 0.69, F1,59 ¼ 133.2, P ,

0.001; second-year pollinators, R2¼ 0.52, F1,62¼ 68.4, P

, 0.001; first-year plants, R2 ¼ 0.55, F1,29 ¼ 38.2, P ,

0.001; second-year plants, R2 ¼ 0.51, F1,29 ¼ 33.1, P ,

0.001). The linkage level of a plant species was also

positively correlated with its abundance (first-year plant,

R2¼ 0.12, F1,29¼ 4.9, P , 0.05; second-year plant, R2¼
0.13, F1,29 ¼ 5.6, P , 0.05). Note that pollinator

abundance was not estimated independently of visitation

record data. However, plant abundance and phenophase

were positively correlated (first year, R2 ¼ 0.17, F1,29 ¼
6.9, P , 0.05; second year, R2 ¼ 0.20, F1,29 ¼ 8.6, P ,

0.01).

Total numbers of species and links in the networks

accumulated linearly throughout most of the seasons

(network growth phase was 81–85% of the season). At

the end of the season, numbers reached a short phase of

stasis (Fig. 4a). Thus, for most of the season, the first

requirement for a power-law fit of P(�L) was fulfilled.

However, the actual P(�L) was truncated (except for

first-year pollinators; Fig. 2).

The average a value for attachment of new plants to

old pollinators was a¼ 0.64 (N¼ 28 time steps, standard

deviation SD¼ 0.72); for attachment of new pollinators

to old plants, a¼ 0.83 (N¼ 30, SD¼ 0.85). These values

did not differ significantly (t ¼ 1.06, P � 0.07). Thus

species attachment probability, P(L), was sub-linear,

i.e., intermediate between preferential attachment (a¼1)

and independent of L (a ¼ 0) (Fig. 4b). a was

significantly higher than 0 and significantly lower than

1, but it did not differ from 0.5 (P , 0.36). This

dynamical pattern was fully compatible with the

observed truncated power-law linkage-level distribution.

DISCUSSION

Temporal variation in network structure

In the Zackenberg network, properties calculated for

an entire season, namely, connectance, average linkage

 
FIG. 1. Two-year cumulative pollination matrix, Zackenberg, Greenland. Plant species are listed in columns, and pollinator

species in rows. A black square indicates the presence of a link, i.e., one or more visits made by a given pollinator species to a given
plant species during one or both study years. Li (numbers on the right) and Lj (numbers at the bottom) represent the linkage level or
number of links between pollinator species i and plant species j to other species, respectively. The total number of links is I¼ 452.
The matrix is sorted in a nested way, i.e., pollinator species are sorted downward according to descending Li, and plant species are
sorted from left to right according to descending Lj. Thus the lower nestedness tail is made up of links between plant generalists and
pollinator specialists, and the upper right tail is made up of links between pollinator generalists and plant specialists.

TABLE 2. Cumulative network properties for each year and for both years pooled.

Network parameter First year Second year Both years

Start of season 21 June 17 June
End of season 2 August 24 August
Length of season (days) 43 69
A, no. pollinator species 61 64 76
N, no. flowering plant species 31 31 31
M ¼ A 3 N, network size 1891 1984 2356
I, total no. links in network 286 268 452
C ¼ I/M, network connectance 0.15 0.14 0.19
hLii ¼ I/A, mean linkage level of pollinators 4.7 4.2 5.9
hLji ¼ I/N, mean linkage level of plants 9.2 8.6 14.6
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level, linkage-level frequency distribution, and so forth,

were stable between years (Table 2). However, our

highly resolved data set revealed considerable dynamics

within and between seasons. One-fifth of the pollinator

species and two-thirds of all links were only observed in

one of the two years. These species are specialized and

often rare and their links make up the lower and the

right tails of the link pattern in the nested-matrix version

(Fig. 1). Thus matrix dynamics were mainly confined to

the nestedness tails. In a Greek pollination network,

Petanidou and Potts (2006) noticed a similar, very

dramatic turnover in pollinator species number through-

out the season, indicating that strong temporal dynam-

ics may be a general property of pollination networks.

Other studies have also suggested this (Lundgren and

Olesen 2005, Basilio et al. 2006, Medan et al. 2006).

As in many other pollination networks (Jordano et al.

2003), the plant community of the Zackenberg network

showed a truncated linkage-level distribution. The

pollinator community also showed truncation of its

linkage-level distribution in the second year. We believe

this deviation from a power-law distribution and the a ,

1 to be due to various constraints operating in the

network, limiting high-linkage-level species in attaching

preferentially to new species. Constraints are defined as

factors limiting choice decision by a ‘‘forager’’ (Stephens

and Krebs 1986). Our temporally resolved data set

allowed us specifically to go a step further and look for

candidate factors correlated with this truncation.

Abundance and phenophase

If attachment of one individual of a new species to an

individual of an old species i is random, only the

abundance of i determines the attachment probability of

i. This rationale is, in essence, MacArthur’s (1972)

‘‘principle of equal opportunity,’’ i.e., if resources are

limiting they should be utilized in proportion to their

abundance. Thus attachment among individuals is

unconstrained, whereas attachment at the species level

is constrained by abundance. Because abundance

frequency distributions generally are lognormal (e.g.,

Grey et al. 2006), a few common species get a high

attachment probability, whereas most species are rare

and consequently get a low attachment probability.

Significant, positive mutualistic abundance–linkage-level

relationships are well known (e.g., Elberling and Olesen

1999). In seed-dispersal networks, linkage level is

correlated with abundance both for plants and animals

(Jordano 1987). However, in Zackenberg, Greenland,

plant abundance explained only 12% of plant linkage

level. The use of a more pollinator-relevant abundance

measure such as floral reward amount would most

FIG. 2. Cumulative probability distributions of (a) pollinator and (b) plant linkage level (L) in log–log plots for the two years
combined. Using the R package (R Development Core Team 2005), a power law (pow), an exponential (exp), and a truncated
power-law (tru) distribution were fitted to P(�L), the probability that a given node has L or more links. Pollinators had the best fit
(in boldface) to a power-law distribution (AICexp ¼ 426, AICpow ¼ 415, AICtru ¼ 422) and plants to a truncated power-law
distribution (AICexp¼ 231, AICpow¼ 280, AICtru¼ 210). Separate analyses were also done for the first year (for pollinators, AICexp

¼ 313, AICpow¼ 272, AICtru¼ 310; for plants, AICexp¼ 202, AICpow¼ 231, AICtru¼ 191) and for the second year (for pollinators,
AICexp¼ 364, AICpow ¼ 374, AICtru ¼ 356; for plants, AICexp¼ 222, AICpow ¼ 266, AICtru ¼ 206).

Notes: Different L values have different numbers of points, i.e., they are overlapping in the figure. This is visually confusing in
panel (a), where the the truncated power law appears to fit the data better than the power law. However, the more numerous low-L
data points result in a better fit to the power law, as indicated above.
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certainly increase R2. This is paralleled by food-web

analyses using very elaborated measures of resource

quality, e.g., C:N ratios. A robust estimation of the

correlation strength between abundance and linkage

level of pollinators has to await studies including
abundance data produced independently of observations

of flower visitation.

For both plants and pollinators at Zackenberg,

phenophase length and linkage level were correlated. A

longer phenophase of a species translated into more

days of potential attachment to new species and an

increased linkage level. Thus the shape of the pheno-

phase frequency distribution influenced linkage-level

distribution. At Zackenberg, the shape of the pheno-

phase distribution was lognormal. In an analysis of

phenophase distributions (J. M. Olesen, unpublished

data), two-thirds of a sample of 32 species communities

had a lognormal phenophase distribution. A few species

had a very long phenophase, whereas most species had

only a short burst of activity. If the number of species in

a habitat was higher than 36, the distribution was always
lognormal. At Zackenberg, phenophase length ex-

plained 51–69% of the variation in linkage level. Thus

phenology contributed to the skewed frequency distri-

bution of linkage level.

Constraints to species attachment

The cumulative linkage level of species i at day t, Li (t),

summarizes the influence of all factors on the attach-

ment of new species to species i during the first t days of

FIG. 3. Matrix dynamics and pollinator and plant phenophase distributions from the first study season of the Zackenberg
pollination network (day 1 is 21 June; see Table 2). (a) A cartoon of six time-slice matrices from different days during the season.
All species present during the season are included (A and N are the pollinator and plant communities, respectively). For each time-
slice t, only links observed at least on day t are shown as black squares. These links may also be present earlier and/or later. (b, c)
The phenophase length diagrams show the minimum temporal extent of insect flower visitation and flowering of each species
(‘‘minimum’’ because an insect or a plant species might have foraged or flowered earlier or later than observed). Each bar represents
a species. Species are sorted according to their date of commencement of flowering or foraging, and then according to the date when
flowering and foraging came to an end.
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its phenophase. Thus we expect Li (t) to be a strong

predictor of the attachment success, P(Li), of any new

species to i during the subsequent time step from t to tþ
1. Because a values were lower than predicted according

to a preferential attachment model (a ¼ 0.63–0.84), we

suggest that some species-specific constraints, besides

abundance and phenology, limited the attachment

probability. We will discuss some of these constraints.

For cost reasons, a new pollinator entering a habitat

cannot scan the entire ‘‘floral market,’’ especially if this

is large (Mitchell 1989). Instead the pollinator tends to

search among close floral resources, i.e., it perceives only

local, not global, information about the full range of

floral resources available in the network (a mechanism

termed ‘‘information filtering,’’ e.g., Mossa et al. 2002).

Thus information filtering is based on behavioral

factors. Attachment becomes a function of the linkage

level of the flowering plant species in the vicinity of the

new pollinator. This informational constraint upon

attachment reduces the value of a and lowers the tail

of P(�L). The same scenario may operate for a new

flowering plant species entering the ‘‘pollinator market.’’

Another constraint is the length of the phenophase or

the ‘‘age’’ of a species. At Zackenberg, we noted that

linkage level of the most linked species seemed to level

off before network growth reached stasis at the end of

the season (Fig. 4a). Thus these species may experience

‘‘senescence,’’ with old flowers being less attractive and

long-lived pollinators ceasing to forage late in life. Thus

age constraints will reduce attachment of new species to

species with a long phenophase (which often are also the

most linked ones), and thus will lower a and truncate

P(�L).
Morphological and phenological factors make certain

links ‘‘forbidden’’ through morphological mismatching

and phenological uncoupling, respectively (Jordano

1987, Jordano et al. 2003, 2006, Stang et al. 2006).

Pollinator body size–flower size mismatching is an

example of a morphological constraint (e.g., Woodward

et al. 2005a; however, see Stang et al. 2006). Links

between early-flowering plant species and late-seasonal

pollinator species, for example, are phenologically

constrained because their phenophases do not overlap.

Thus only a fraction of all potential interactions in the

network are actually observed, independently of sam-

pling effort, i.e., they represent structural zeroes in the

link matrix. Phenological uncoupling was already noted

by Elton (1927), who devoted an entire chapter to ‘‘Time

and animal communities,’’ and it receives increasing

interest in relation to global climate change (e.g., Høye

et al. 2007, Memmott et al. 2007). Thus these constraints

also push the mode of attachment away from being

preferential. Other constraints are resource related, such

as a mismatch between type of floral reward presented

by a plant and type of resource searched for by a

pollinator. At Zackenberg, Papaver radicatum offers

only pollen. Thus the butterflies, which do not consume

pollen, avoid this species. Overall, this battery of factors

or constraints may explain the mode of species

attachment and the truncation of the power-law

linkage-level distributions observed at Zackenberg.

CONCLUSION

Higher abundance and longer phenophase increased

the likelihood that a species would become attached to

new species. However, our analysis demonstrated that

this attachment of new species preferentially to the most

linked old species was constrained. Such a pattern of

FIG. 4. (a) Seasonal growth and stasis in numbers of species
(plants and pollinators pooled) and links recorded during the
two study years; day 1 is 21 June in year 1 and 17 June in year 2.
(b) Cumulative probability j(�L) of new plant species
becoming attached to old pollinator species with Li links, using
the time step from day 9 to day 11 in the first study season as an
example (see Table 1 for details). Each circle is a species; note
the log–log scale. The upper thin ‘‘preferential’’ line is based on
a preferential attachment model, the lower thin ‘‘random’’ line
is based on random attachment, and the heavy line is the
regression of j(�L) on Li.

JENS M. OLESEN ET AL.1580 Ecology, Vol. 89, No. 6



network dynamics is fully compatible with previously

reported network patterns, e.g., the truncated power-law

linkage-level distribution. Our analysis represents a first

step in linking network structure to dynamics, and in

understanding the ecological processes behind network

dynamical processes. Future studies may focus upon the

temporal dynamics of small groups in networks of

strongly linked species, such as modules (Olesen et al.

2007), and the quantification of the relative importance

of constraints in various kinds of ecological networks.

The latter type of research may help to explain the

relative contribution of different mechanisms to the

formation of network patterns by going beyond purely

static descriptions, which only give us correlations. Thus

a dynamic approach brings us closer to causality, also in

relation to studies of network robustness against

external perturbations.
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Mossa, S., M. L. Barthélémy, H. E. Stanley, and L. A. N.
Amaral. 2002. Truncation of power law behavior in ‘‘scale-
free’’ network models due to information filtering. Physical
Review Letters 88:1–4.

Newman, M. E. J. 2001. Scientific collaboration networks.
Proceedings of the National Academy of Sciences (USA) 98:
404–409.

Nielsen, A., and J. Bascompte. 2007. Ecological networks,
nestedness and sampling effort. Journal of Ecology 95:1134–
1141.

Olesen, J. M., J. Bascompte, Y. L. Dupont, and P. Jordano.
2006. The smallest of all worlds: pollination networks.
Journal of Theoretical Biology 240:279–276.

Olesen, J. M., J. Bascompte, Y. L. Dupont, and P. Jordano.
2007. The modularity of pollination networks. Proceedings of
the National Academy of Sciences (USA) 104:19891–19896.

Olesen, J. M., and P. Jordano. 2002. Geographic patterns in
plant–pollinator mutualistic networks. Ecology 83:2416–
2424.

Petanidou, T. 1991. Pollination ecology in a phryganic
ecosystem. [In Greek.] Dissertation. Aristotelian University,
Thessaloniki, Greece.

Petanidou, T., and S. Potts. 2006. Mutual use of resources in
Mediterranean plant–pollinator communities: How special-
ized are pollination webs? Pages 220–244 in N. M. Waser and
J. Ollerton, editors. Plant–pollinator interactions: from
specialization to generalization. University of Chicago Press,
Chicago, Illinois, USA.

Polis, G. A. 1991. Complex trophic interactions in deserts: an
empirical critique of food-web theory. American Naturalist
138:123–155.

R Development Core Team. 2005. R: A language and
environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. hhttp://www.
r-project.org/i

Redner, S. 1998. How popular is your paper? European
Physical Journal B 4:131–134.

Rezende, E. L., J. E. Lavabre, P. R. Guimaraes, Jr, P. Jordano,
and J. Bascompte. 2007. Non-random coextinctions in
phylogenetically structured mutualistic networks. Nature
448:925–928.

Stang, M., P. G. L. Klinkhamer, and E. van der Meijden. 2006.
Size constraints and flower abundance determine the number
of interactions in a plant–flower visitor web. Oikos 112:111–
121.

Stephens, D. W, and J. R. Krebs. 1986. Foraging theory.
Princeton University Press, Princeton, New Jersey, USA.

Sugihara, G., L.-F. Bersier, T. R. E. Southwood, S. L. Pimm,
and R. M. May. 2003. Predicted correspondence between
species abundances and dendrograms of niche similarities.
Proceedings of the National Academy of Sciences (USA) 100:
5246–5251.

Teichmann, S. A., and M. M. Babu. 2004. Gene regulatory
network growth by duplication. Nature Genetics 36:492–496.

Thompson, J. N. 2005. The geographic mosaic of coevolution.
University of Chicago Press, Chicago, Illinois, USA.

Vázquez, D. P., and M. A. Aizen. 2004. Asymmetric
specialization: a pervasive feature of plant–pollinator inter-
actions. Ecology 85:1251–1257.

Waser, N. M., L. Chittka, M. V. Price, N. Williams, and J.
Ollerton. 1996. Generalization in pollination systems, and
why it matters. Ecology 77:1043–1060.

Waser, N. M., and J. Ollerton, editors. 2006. Plant–pollinator
interactions: from specialization to generalization. University
of Chicago Press, Chicago, Illinois, USA.

Williams, R. J., and N. D. Martinez. 2000. Simple rules yield
complex food webs. Nature 404:180–183.

Woodward, G., B. Ebenman, M. Emmerson, J. M. Montoya,
J. M. Olesen, A. Valido, and P. H. Warren. 2005a. Body size
in ecological networks. Trends in Ecology and Evolution 20:
402–409.

Woodward, G., D. C. Speirs, and A. G. Hildrew. 2005b.
Quantification and resolution of a complex size-structured
food web. Advances in Ecological Research 36:85–135.

JENS M. OLESEN ET AL.1582 Ecology, Vol. 89, No. 6


