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Abstract—Pollination success is influenced by factors such as density and distance
from neighbouring conspecifics. However, the pure neighbourhood effects of
spatial patterns of interaction on pollination success remains poorly understood. In
this study, we used techniques of spatial point pattern analysis (SPPA) to
investigate the relationship between the spatial distribution of a specialist
pollinator, the weevil Derelomus chamaeropis, and the fruiting success of its host
plant, the dwarf palm Chamaerops humilis, within a nursery pollination system. We
georeferenced a dwarf palm population in a 22-hectare plot (96 individuals: 41
females/ 55 males), located at the Dofiana National Park (SW Spain). We quantified
the abundance and spatial pattern of adult weevil occupancy, and their correlation
with the spatial distribution of dwarf palms. Additionally, we analysed the spatial
pattern of fruiting success and how palm traits (number of inflorescences and
flowers, and sex) influenced adult weevil abundance and fruiting success. Our
findings revealed that presence/abundance of D. chamaeropis depended on plant
sex, with female inflorescences showing significantly higher adult weevil
abundances. We found a significant, negative density-dependent response, where
higher neighbourhood density of palms led to reduced local weevil abundance. In
contrast, we observed positive density and distance dependence for fruiting
success at small spatial scales (2-5 m and 5-15 m), suggesting enhanced pollination
success in dense patches. Our results indicate that weevil distribution is shaped by
local resource availability and competitive interactions rather than broader palm
arrangement. Additionally, pollination efficiency and fruit set benefit from positive
distance-density dependence in dense patches.
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INTRODUCTION individuals per unit area) (Mustajérvi et al. 2001;
Spigler & Chang 2009), spatial aggregation

Population attributes, particularly the spatial (Wiegand et al. 2007; Fedriani et al. 2015;
distribution of individuals, can have a significant Rodriguez-Rodriguez et al. 2015) and pollinator
impact on pollination success in insect-pollinated abundance (Aizen & Harder 2007; Hallett et al.
plants. Among the extrinsic factors influencing 2017) have been highlighted in previous research.
pollination success, plant density (number of Various processes, such as biodiversity loss
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(Vamosi et al. 2006), habitat fragmentation (Fahrig
2003), and land-use changes (Gallant et al. 2014;
Moser et al. 2015) can disrupt plant-pollinator
interactions (Harris & Johnson 2004; Bailey et al.
2010; Abramson et al. 2011). In remnant habitat
fragments, changes in the pollinator community
can lead to reduced visitation by pollinators,
resulting in decreased reproductive output for
plant species (Xiao et al. 2016). The loss of plant-
pollinator interactions may trigger far-reaching,
cascading changes in natural communities
(Jordano 2016), leading to a loss of ecological
functions (Valiente-Banuet et al. 2015).

The vulnerability of plants with highly
specialized interactions with their pollinators to
functional losses of their pollination service has
been well documented (Johnson & Steiner 2000).
These specialized pollination systems involve a
few pollinator species that are efficient in
pollinating plant species, and the interaction
partners have tightly co-adapted life cycles that
reciprocally depend on each other for
reproduction (Johnson et al. 2012; Dufay & Anstett
2003). The main threats of these systems are
anthropogenic modifications to the local landscape
(Klank et al. 2010; Geerts & Pauw 2012; Phillips et
al. 2015) and climate change (Weaver & Mallinger
2022; Schweiger et al. 2010) that can directly affect
the plant and the pollinator leading to a decrease
in plant fitness and population density. The
specificity of these interactions highlights the
importance of their conservation due to the high
risk of extinction or, ultimately, co-extinction
(Johnson & Steiner 2000).

The visitation rate of insect pollinators in local
plant patches can be influenced by the density and
spatial aggregation of individuals, as these factors
can affect the availability and accessibility of floral
resources (Wiegand et al. 2006; Raventos et al.
2010; Fedriani et al. 2015). High-density patches
may attract more pollinators due to positive,
density-dependent responses to clumped resource
abundance and reduced travel time among
multiple patches (Jump & Pefiuelas 2006; Fedriani
et al. 2015). However, high-density populations
can also experience competition for pollinator
visits and resources, which may negatively impact
fruit initiation and development (Gunton & Kunin
2009; Spigler & Chang 2009; Alonso-Lopez et al.
2022).
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Although these effects are generally expected,
they can vary among pollinator species depending
on their ecology and foraging behaviour (Hegland
& Boeke 2006). Generalist pollinators often exhibit
aggregative responses (Fontaine et al. 2008),
whereas some specialist pollinators can locate
isolated plants even in low-density situations
(Nason et al. 1998; Franz 2007) due to coevolved
response mechanisms (e.g., species-specific
attractants and sensory abilities; Hossaert-McKey
et al. 2010). The presence and abundance of
pollinators can also depend on important intrinsic
traits such as flowering synchrony (Jacome-Flores
et al. 2018) and the number of flowers per plant
(Augspurger 1981; Melampy 1987), which may
affect intraspecific competition and dilution of
pollinator visits (Fritz & Nilsson 1994; Larson &
Barrett 2000; Delmas et al. 2014; Jacome-Flores et
al. 2018). While highly specialized pollination
systems are often vulnerable to environmental
disturbances due to their reliance on specific
pollinator species (Johnson & Steiner 2000), certain
mechanisms may provide resilience even in highly
modified landscapes. For instance, some
pollinators  exhibit  behavioural plasticity,
adjusting their foraging strategies or utilizing
alternative resources in response to environmental
changes (Winfree & Kremen 2009), which can
enhance system persistence (Winfree et al. 2009).
Resilience may be reinforced by pollinator
behavioural plasticity, such as shifts in foraging
strategies or alternative resource use, as well as by
landscape connectivity, which facilitates pollinator
movement between disturbed and undisturbed
habitats (Hadley & Betts 2012). Furthermore,
pollinator visitation frequency determines pollen
transfer in specialized systems (Knight et al. 2005).
Understanding the overall net effects (positive,
negative, neutral) of extrinsic plant characteristics
such as local density and pollinator spatial
distribution on pollination success will provide
insight into how mutualisms evolve and function.
In particular, although highly-specialized
pollination systems are typically more susceptible
to disruptions, their co-adapted interactions may
mitigate effect of reduced visitation thereby
enhancing pollinator reliability under certain
conditions, reducing pollination limitation and
allowing for some degree of persistence even in
highly disturbed environments (Mufioz-Gallego et
al. 2022).
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Here, we focused on the highly specific,
nursery pollination system between the dioecious
dwarf palm Chamaerops humilis and its specialized
pollinator the weevil Derelomus chamaeropis
(Curculionidae; Anstett 1999; Dufay & Anstett
2004). Jacome-Flores et al. (2018) studied how the
spatial patterns C. humilis affected the presence
and abundance of D. chamaeropis larvae with
limited mobility. However, it remains unknown
how highly-mobile adult weevils respond to the
local density and spatial distribution of their host
plant. Thus, larvae and adult weevils differ in
many relevant traits, including their contrasting
mobilities. Whereas larvae are confined within
their natal inflorescences, adults are highly flying
and move among palms. Thus, factors shaping the
spatial distribution of larvae (e.g., host density)
should not necessarily be the same as those acting
on adults. We therefore investigate for the very
first time how the abundance of this pollinator in
the adult phase relates with the spatial pattern of
C. humilis. The aim of this work was to analyse how
the C. humilis spatial patterns impinge the
occupancy patterns of D. chamaeropis and their
consequences on fruiting success of C. humilis.
More specifically, we explored different
hypotheses. (1) Garcia et al. (2018) found that
dwarf palm male inflorescences had more weevils
than female plants, thus, we expected that adult
weevil abundance will be positively related with
male plants. (2) The spatial pattern of D.
chamaeropis larvae over their host plants has been
described as random, due the high mobility of
adults, which enables them to move among host
plants regardless of their highly aggregated spatial
distribution (Jacome-Flores et al. 2018), thus, we
expected that the adult weevil's spatial
distribution will also be randomly distributed
across reproductive palms. (3) Pollinator
abundance is usually positively correlated to
fruiting success, so we expect that female plants
with higher abundance of adult weevils and co-
pollinators  (additional insect species that
contributes to pollen transfer; Garcia et al. 2018)
will have higher fruiting success.

MATERIALS AND METHODS

STUDY SPECIES AND AREA

Chamaerops humilis is a small dioecious palm
with pistillate and staminate inflorescences on
different individuals (Herrera 1989; Anstett 1999).
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In Europe, it is common in coastal and subcoastal
areas where it can live up to 1000 m above sea level
(Herrera 1989), being part of different habitats like
shrublands or at the understory of diverse forests
(Merlo et al. 1993). The dwarf palm population of
our study site (Jacome-Flores et al. 2016) shows a
spatial pattern characterized by large clusters
(radius: 21 m) including small aggregations
(radius: 2.8-4 m) of individual palms. Previous
genetic analysis showed that these clumps had
lower inbreeding value (FIS value) with no spatial
genetic structure (Jacome-Flores et al. 2019). C.
humilis is a keystone species in the Mediterranean
ecosystem, because it is very tolerant to
disturbance (Herrera 1989), its strong potential for
the restoration of native ecosystems and the
recovery of ecosystem services (Garrote et al.
2019), and a valuable food resource for many
mediterranean mammals and invertebrates
(Mufioz-Gallego et al. 2019; Jacome-Flores et al.
2020). C. humilis is engaged in a nursery pollination
with the host-specific palm flower weevil D.
chamaeropis (Curculionidae, subfamily
Derelominae) (Anstett 1999). Weevil larvae
develop inside the rachis of the inflorescences
(mainly male) where they stay in winter (Dufay et
al. 2004). On spring, adult weevils emerge from old
dwarf palm inflorescences in search for
inflorescences in anthesis (either female or male),
where they typically stay until the end of anthesis,
finding shelter, egg-laying sites and food (i.e.
nectar droplets or pollen) (Dufay et al. 2004). Adult
weevils emerge mainly from staminate
inflorescences and are mainly pollinivorous. Thus,
C. humilis has two strategies to avoid sex selection
from weevils and to ensure effective partner
encounter and pollen transportation: odour
mimicry (Dufdy et al. 2003) and flowering
synchrony between sexes (Dufay 2010). Larvae are
confined within their natal inflorescences, adults
are highly mobile, flying and moving among
flowering palms (Jacome-Flores et al. 2018).

This study was conducted in the Dofana
National Park (510 km2; 37°9'N, 6°26'W), on the
right bank of the Guadalquivir estuary in south-
west Spain. The study site was located at the
Dofiana Biological Reserve (DBR), the core area of
the National Park. The climate is Mediterranean
with some oceanic influence, with dry, hot
summers (June-September) and mild, wet winters
(November-February). The extreme drought is
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concentrated during the summer, and the main
rainy period is during winter. Average annual
rainfall is 549 mm, but varies widely, ranging
between 170 and 1028 mm. Average annual
temperature range between 15.4 and 18.7°C (data
from Monitoring Team of Natural Process of
Dofiana Biological Station; http://icts.ebd.csic.es

datos-meteorologicos).

We selected a focal dwarf palm population
within DBR, called Martinazo. This site is located
in a transition zone between the Mediterranean
shrubland and the marshland. Mediterranean type
shrubland dominates the vegetation. This
xerophytic shrubland is composed by Halimium
halimifolium, Rosmarinus officinalis, Ulex spp., and
Stauracanthus spp. Additionally, there are small
patches of Quercus suber and Olea europaea var.
sylvestris and Fraxinus angustifolia (Jacome-Flores
et al. 2016). The plot area occupies 20.93 ha, where
we georeferenced and marked all adult palm
individuals (55 males and 41 females).

DATA COLLECTION
Dwarf palm flowering traits

In April of 2017, during the dwarf palm
flowering peak (Jacome-Flores et al. 2018), we
recorded plant sex (male or female) and
inflorescences abundance (number of
inflorescences produced by each reproductive
individual). Additionally, we randomly selected
and marked three pistillate inflorescences, and we
counted all the flowers (flower display) of each
reproductive female plant to monitor pollination
success through fruiting success as a proxy (i.e., the
number of fruit set divided by the number of
flowers) (Fedriani et al. 2015).

Pollinator abundance

We established a systematic schedule for
sampling  pollinator  activity, = conducting
observations from 9-11 a.m., coinciding with the
peak of weevil activity. We recorded D. chamaeropis
abundance (number of weevils on three
inflorescences in the 96 focal dwarf palms) and the
abundance of other co-pollinators, the pollen
beetle Meligethinus pallidulus (Nitidulidae; Garcia
et al. 2018) and other Nitidulidae beetles, whose
their peak activity matches with that of the main
pollinator (Munoz-Gallego et al. 2022). For both
pollination types, we took a repeated sample of
their abundance in two consecutive periods
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separated by one week (hereafter, Period A and
Period B) within the pollination phenophase
spanning the peak flowering of both sexes
(maximum overlap period), although female
ended their anthesis later (Jacome-Flores et al.
2018).

SPATIAL POINT PATTERN ANALYSIS

To assess thespatial distribution of D.
chamaeropis and  its potential effects on C.
humilis fruiting success, we applied Spatial Point
Pattern Analysis (SPPA), a robust statistical
framework designed for characterizing fine-scale
spatial distributions of “ecological objects” such as
plants (Illian et al. 2008; Wiegand & Moloney
2014). SPPA works by analysing the georeferenced
locations of individual plants, which can be
supplemented with additional attributes that
characterize the plants such as flower production,
fruiting success, or pollinator abundance. Unlike
simpler methods, which often rely on summary
statistics or spatial averaging, SPPA enables a
detailed examination of distance-dependent
patterns, providing insights into how the
measured attribute is shaped by the spatial
distribution.

To examine potential distance dependence of
the weevil abundance on C. humilis, we used
techniques of quantitatively-marked point pattern
analysis (Fedriani et al. 2015; Jacome-Flores et al.
2016). Our dataset comprises, for each individual
dwarf palm, the coordinates, plant sex (male or
female) and the weevil abundance as marks. We
used a univariate and bivariate quantitatively-
marked point pattern (Illian et al. 2008; Wiegand &
Moloney 2014). Mark correlation functions are
based on all (ordered) pairs of dwarf palms, which
have interpoint distances r. The basic idea of the
mark correlation function is then to estimate the
mean value of a test function t(mi, m;) of the two
marks mi and m;, taken over all (ordered) pairs i-j
of dwarf palms which have an inter-plant distance
r. The univariate function cm(r) was performed for
male and female plants separately. The function
allows us to determine if plants with a nearby
neighbour tend to host a higher number of weevils
than the ‘average’ palm. The bivariate function
cm2(r) was useful to determine if a female palm
hosts fewer weevils when growing close to a male
palm (compared to the ‘average’ female palm). We
also used a variation of mark correlation function
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Table 1. Summary statistics of GLMM. Female palms (F) and male palms (M).

Model variables estimate P-value R2 (%)

1. Weevil abundance Inflorescences 0.008 <0.0001 12.52
M palms -0.031 0.636
F palms 2 0.0001

2. Weevil abundance F palms Inflorescences 0.013 <0.0001 40.38
Flowers 0.0003 0.276

3. Fruiting success Inflorescences -0.023 0.043 14.6
weevil abundance -0.016 0.088
Co-pollinator 0.016 0.982

that directly relates the weevil abundance of C.
humilis individuals to the density of their
conspecific neighbours within a given distance, r.
This “density correlation function” (for more
details (Fedriani et al. 2015) Cwk(r) estimates the
classic Pearson correlation coefficient between the
weevil abundance mi of a palm and the number of
neighbours within distance r [AKi(r)].

SPATIAL PATTERN OF CHAMAEROPS HUMILIS FRUITING SUCCESS

To assess potential distance dependence of
fruiting success in dwarf palms we used
techniques of quantitatively-marked point pattern
analysis. Our dataset includes all female dwarf
palms and their fruiting success as a mark.
Moreover, we independently assessed fruit set and
flower display distance dependence. We estimated
the mean fruiting success pf(r) of female j that has
a female i at distance r, divided by the mean
fruiting success uf of all females, that is, km(r)=
pf(r)/pf (Wiegand & Moloney 2014). Thus, km(r) >
1 indicates that females that have females at
distance r show, on average, higher fruiting
success than expected at random. Conversely,
km(r) <1 indicates that females with other females
within a distance r show, on average, reduced
fruiting success compared to a random
expectation. By using density correlation functions
we also directly related fruiting success of C.
humilis females to the density of their conspecific
neighbours. This “density correlation function”
(Fedriani et al. 2015) has the assumptions already
described above.

To test the fit of the data with specific point
process models, we fitted contrasting null models
of the point processes and, wusing 199

randomizations, estimated simulated envelopes,
being the fifth lowest and highest values of the
summary statistics (Wiegand et al. 2013; Fedriani
& Wiegand 2014). Observed values lying within
the simulation envelopes would be indicative of
stochastic patterns, according to the null model.
Observed values above the top or below the
bottom of the simulation envelopes indicate that
such values were higher or lower than expected by
the null model. To test the overall fit of the models,
we used a Goodness-of-Fit (GoF) test that collects
the scale-dependent information contained in the
test statistic into a single parameter ui;, which
represents the total squared deviation between the
observed pattern and the theoretical result across
the scales of interest. Therefore, the GoF test
returns a P-value that, when significant, indicates
a departure of the observed mark correlation
function from the random marking null model
over the distance interval of interest. If a significant
departure occurs, we can inspect the plot of the
mark-correlation function together with the
simulation envelopes to identify the specific
distances r where departures occurred. For all
point pattern analysis, we used the software
package Programita (Wiegand & Moloney 2014)
which can be accessed at https://www.pro
gramita.org.

STATISTICAL ANALYSIS

We used a Spearman correlation test to assess
the relation between weevil abundance in periods
A and B. We used a Mann-Whitney U test to
determine differences in weevil abundance
between plant sexes at periods A and B.
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For the statistical analysis of the response
variables of weevil abundance and fruiting success
we performed Generalized Linear Mixed Models
(GLMM). For weevil abundance on each palm
(model 1), we used a Poisson GLMM with a log link
function, including plant sex and number of
inflorescences as explanatory variables. For weevil
abundance on female palms (model 2), we used a
Poisson GLM with a log link function, using
number of flowers and inflorescences as
explanatory variables. For fruiting success, we
used a binomial GLMM with logit link function,
including number of inflorescences, presence of
co-pollinators and mean weevil abundance as
explanatory variables. Individual plants were used
as a random factor.

RESULTS

PRESENCE AND ABUNDANCE OF DERELOMUS CHAMAEROPIS:
DWARF PALM SEX AND SAMPLING PERIOD

We recorded a total of 942 and 1,479 individual
weevils in the two repeated weevil censuses of
every palm (period A and period B, respectively).
Adult weevils were more frequently found on
male (88% of palms with at least 1 weevil)
compared to female palms (67%; Tab. 1). The

A
) Presence A
1
0.8} T 0.8
) @
3 o6 =
z z
c
8 041 S04}
= =
0.2 0.2|
0.0 . 0.0
M
B
) Abundance A

141
T 25|

121 I

Mean Value
Mean Value

Sex

Occupancy patterns of Derelomus chamaeropis on Chamaerops humilis 87

percentage of weevil presence was rather variable
among periods, with more weevil presence in
period B (86%) compared to period A (72%).
Presence in female and male palms between
periods was also higher in period B (83% of all
females; 89% of all males) than in A (51% of all
females; 87% of all males).

We found a significant, positive correlation in
the number of weevils between A and B periods
(Spearman correlation, rho= 0.20 P < 0.05, N = 96)
suggesting a temporal consistency in weevil
counts across individual palms. A Mann-Whitney
test further indicates no significant differences (W=
4161, P = 0.24, N1= N2= 96) between the counts at
individual plants (paired counts) between both
periods. Moreover, we found significant
differences (W = 5836, P < 0.05, N1 = N2 = 96) in
weevil abundance between male and female dwarf
palms (Fig. 1). Weevil abundance in female plants
was 14 £ 3.7 individuals and 11 + 1.3 individuals in
male plants (95% confidence intervals of the means
were (4.6, 23.5) and (11.3, 16.8), respectively). We
found a significant difference (W =10986, P = 0.01)
between female palms in A and B periods (Fig. 1),
yet with no differences between male palms (W =
1433 P =0.63).

Presence B

-

Abundance B

Figure 1. A) Weevil
presence * SE in each
sampled period and palm
sex and B) Weevil mean =
SE abundance in each

I sampled period and palm
sex. Grey bars represent
female palms and white

v bars represent male palms.

Sex
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fruiting success model (model 3), the number of
inflorescences had a slight yet significant negative

effect on fruiting success (effect estimate = -0.02, P

We monitored the fruiting success of 19,845 =(.043; Tab. 1). The effect of weevil abundance on
flowers in female dwarf palms. On average, each

plant produced 20.6 inflorescences (s.e. + 3.4), with

WEEVIL ABUNDANCE AND PLANT POLLINATION SUCCESS:
EFFECT OF FLOWERING TRAITS AND CO-POLLINATORS

fruiting success was marginally significant (effect
estimate = -0.016, P = 0.088; Tab. 1), while the

each inflorescence bearing an average of 185.4 presence of co-pollinators did not influence

flowers (s.e. + 30.9). The mean overall fruiting fruiting success (effect estimate = 0.016, P = 0.982;
success (+1 s.e.), calculated as the proportion of Tab. 1).
flowers that developed into fruits, was 0.15 (s.e. +

0.3). For the weevil abundance model (model 1), SPATIAL PATTERN OF D. CHAMAEROPIS

the number of inflorescences had a significant We performed analyses of D. chamaeropis
positive effect on weevil abundance (effect spatial patterns using the r-mark correlation
estimate = 0.008, P < 0.001; Tab. 1). Female palms function km(r), with and without accounting for
had a high and significant positive effect (effect sex expression. There was no significant
estimate = 2, P < 0.001; Tab. 1) on weevil aggregation of weevil abundance at any spatial
abundance. In the model assessing weevil scale neither between male (rank =76, P = 0.63; Fig.
abundance specifically on female palms (model 2), 2A) and female plants (rank = 145, P =0.28; Fig. 2B),
the number of inflorescences had a significant and nor across sexes (rank = 106, P = 0.48; Fig. 2C).
positive effect (effect estimate =0.13, P <0.001; Tab. Without sex as mark along all r distances
1), while the number of flowers had no effect considered, distance had no significant effect on
(effect estimate = 0.0003, P = 0.276; Tab. 1). For the abundance (rank = 106, P = 0.18; Fig. 2D).
A)  Effect from males to males at r distance B) Effect from females to females at r distance
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Figure 2. Mark correlation function analyzing spatial association of the weevil abundance in dwarf palm study population with
and without sex pattern. In analysis with sex pattern, the “univariate” r-mark correlation function estimates the mean weevil
abundance of male palm (type 1) that have another male palm at distance r. The “bivariate” r-mark correlation function
estimates the mean weevil abundance of male palm (type 1) that have female palm at distance r. The observed data is
represented by white circles. In analysis without sex pattern, r-mark correlation function estimates the mean weevil abundance
of adult palm that have another adult palm at distance r. The expected mark correlation function is the black line; grey polygon:
expectation under the null model, that is limited by simulation envelopes being the fifth lowest and highest values taken from
199 simulations of the null model where both sexes were independently randomized.
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Figure 3. Analysis of weevil presence absence in our study
population with random labeling function. A) Function
p11(r) gives the conditional probability, that for two dwarf
palms separated by distance r, both are type 1 (i.e. with
weevil presence). B) Function p12(r) gives the conditional
probability, that for two dwarf palms separated by
distance r, the first type 1 (i.e. with weevil presence) and
the second type 2 (i.e. without weevil presence). C)
Function dif(r) compares the density of dwarf palms (i.e.
1+2) around dwarf palms with weevil presence (i.e. type 1)
with the density of palms (i.e. 1+2) around palms without
weevil presence (i.e. type 2). The expected value of this
test statistics is zero under random labelling null model.
The observed data is represented by white circles. The
expected mark connection function is black line; grey
polygon: expectation under the null model, that is limited
by simulation envelopes being the fifth lowest and highest
values taken from 199 simulations of the null model.
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The random labelling analysis showed that
presence of weevils did not correlate with dwarf
palm aggregation or spatial pattern (Fig. 3). The
univariate function p11(r), showed no signs of
significant aggregation (rank = 139, P = 0.31; Fig.
3A). The bivariate function p12(r), indicated no
spatial aggregation between palms with and
without weevils (rank = 159, P = 0.21; Fig. 3B). The
results of test dif(r), showed that palms with weevil
presence were not associated with palm clusters
(rank =119, P = 0.41; Fig. 3C).

The density correlation function Cm,k(r), taking
into account sex expression, showed no effect of
neighbourhood density of same sex conspecifics
on weevil abundance. There was no significant
effect of male (rank = 143, P = 0.29; Fig. 4A) or
female (rank = 145, P = 0.28; Fig. 4B) focal palms
related to their conspecific neighbourhood density.
Regarding the neighbourhood density of all palms,
we found a significant, negative, density-
dependence response of weevil abundance (rank =
192, P = 0.045; Fig. 4C).

SPATIAL PATTERN OF CHAMAEROPS HUMILIS FRUITING SUCCESS

The density correlation function Cm,k(r)
showed a significant and positive relation for the
fruiting success of female palms at scales up to 5 m
(rank =198, P = 0.015; Fig. 5A) and for the number
of fruits at scales between 5-15 m (rank = 198, P =
0.015; Fig. 5B) within this specific range of
neighbourhood density. The r-mark correlation
function km(r) indicated significant positive
distance dependence at small scales (2-5 m) for
fruiting success (rank = 200, P = 0.005; Fig. 5D). For
fruit number, a positive relation was observed at
both small (3-5 m) and large scales (63-70 m) (rank
=197, P = 0.020; Fig. 5E). For flower number, both
density correlation (rank = 55, P = 0.730; Fig. 5C)
and r-mark correlation (rank = 170, P = 0.150; Fig.
5F) functions showed no significant relation.

DIScussION

Our study addresses the spatial dynamics of
the nursery-pollination system of the dwarf
palm Chamaerops humilis and its specific pollinator,
the weevil Derelomus chamaeropis. We found that
the presence and abundance of the adult weevil D.
chamaeropis, depend more on the sex of the plant
than on plant spatial distribution. While male
palms are more likely to host weevil larvae, female
palms attract substantial numbers of adult weevils.
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significant negative effect on weevil abundance,
where higher neighbourhood density of palms
resulted in reduced local abundance of weevils. In
contrast, we found enhanced pollination success in
denser patches with close neighbouring palms
suggesting a spatial decoupling between
pollinators abundance and reproductive success.

The female inflorescences of the dwarf palm
produce resin droplets as a defence mechanism
during fruit development (Anstett 1999; Fedriani
& Delibes 2011), that reduce the number of
developing larvae (Jacome-Flores et al. 2018). This
plant strategy aims to avoid significant damage to
the rachis of the inflorescence and, consequently,
improve reproductive success. Weevils avoid
visiting ovipositing in non-rewarding
pistillate inflorescences. However, both female
and male plants produce the same odour signals,
making it impossible for adult weevils to

and

rewarding males (Dufay et al. 2003). Contrary to
our predictions, although we found a high
occurrence of weevils on male palms, we observed
higher adult abundance in females than in male
palms. When comparing adult weevil abundance
between anthesis periods (A and B), we recorded a
higher number of weevils on female inflorescences
in the second period. Male dwarf palms tended to
flower more synchronously, and females ended
their anthesis later, with some overlap with male
flowering (Jacome-Flores et al. 2018). This suggests
that a large number of weevils, attracted by odour
signals during flower anthesis (see (Dufay et al.
2003), moved from males without available
inflorescences to late-flowering female palms,
increasing  their there. These
mechanisms, including odour mimicry and male-
female asynchrony, underscore how both sexes

abundance

contribute to supporting weevil populations while
ensuring pollination services—males as primary
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Figure 5. Density correlation function analysing spatial association of the weevil abundance in dwarf palm study population with
and without palm sex as mark. More details about simulation envelopes in Figure 2.

larval hosts and females as attractants (Jacome-
Flores et al. 2018).

In terms of spatial patterns, our results
confirmed our initial predictions on how the
spatial patterns of host plants could influence
movement and pollinator attraction. We detect no
significant spatial clustering regarding adult
weevils. Two interrelated explanations could
account for this observation: the high mobility of
weevils and the random spatial pattern of the floral
resources. As for weevils’ mobility, previous
observation demonstrated that weevils are capable
to travel distances up to 235 m (Jacome-Flores et al.
2018). Such distance surpassed the
maximum distance of the more isolated palm
within the population (50m) (Jacome-Flores et al.
2016). As for the floral resource, our SSPA analysis
showed that, although the dwarf palms show an
intense aggregated pattern (Jacome-Flores et al.,

clearly

2016), the inflorescences display appears randomly
in space. This seems to be a pattern in specialized
pollination mutualisms, where pollination success
is driven more by pollinator behaviour than by
host plant spatial structure. Previous studies on
other nursery pollination systems such as
Lophocereus—Upiga (Holland & Fleming 1999) and
Trollius—Chiastocheta (Klank et al. 2010) showed
also no direct effects of plant spatial distribution on
pollination success. Similar trends have been
observed in other specialized mutualisms, such as

fig-fig wasp (Harrison & Yamamura 2003) and
yucca—yucca moth interactions (Wilson & Addicott
1998), where pollination success is determined
more by pollinator behaviour rather than plant
spatial structure.

Previous studies of pollination systems have
been identified consistent trends for a high number
of inflorescences attracting greater numbers of
pollinators (Knight et al. 2005; Nattero et al. 2011).
In our study population, the abundance of adult
weevils at individual palms was positively related
with female palms and number of inflorescences.
Interestingly, our study revealed an interesting
contrast in the relationship between adult weevil
abundance and larval presence on C. humilis in
relation to inflorescence number, further shaped
by the sex of the palm. Jacome-Flores et al. (2018)
found that plants (mainly male) with a high
number of inflorescences had a lower probability
of holding weevil larvae. In contrast, we found that
adult weevils were more abundant on plants
of
inflorescences. This pattern suggests a divide
between adult and larval habitat suitability. Adult
weevils are attracted to palms with abundant
inflorescences, regardless of whether these palms
are suitable for larval development. Male palms

(mainly females) with a high number

with fewer inflorescences may offer concentrated
resources that favour larval growth, while female
palms attract adults for resources but prevent
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larval development (Jacome-Flores et al. 2018).
This separation ensures that adult weevils find
plentiful resources across both sexes, while larvae
develop mainly on male palms where they face less
direct competition for concentrated resources.

Pollinator attraction in dwarf palms may
depend not only on inflorescence abundance but
also on leaf odour emissions (Dufay et al. 2003). If
inflorescence abundance correlates with leaf
density or emissions, weevil attraction would be
an indirect consequence of leaf-mediated chemical
signalling. Additionally, when we explored the
effects of density-dependence at the plant level, we
found a negative effect of density- and distance-
dependence of plants on adult weevil abundance.
Thus, while adult weevils respond positively to
high inflorescence numbers on individual palms,
high neighbourhood density appears to dilute
resources where plants could experience high
competition for adult weevils (e.g., Alonso-Lopez
et al. 2022), leading to a decrease adult weevil
abundance locally.

There is an interesting relationship between
weevil abundance and plant density. While there
was a negative correlation between the two, we
observed  that plants in  high-density
neighbourhoods exhibited increased fruiting
success and number of fruits. This suggests that
weevils may be more effective in pollen transfer in
high-dense patches due to two main factors: first,
weevils spent less effort searching for plants, and
second, there was reduced competition among
pollinators for the plants' resources (e.g., Fedriani
et al. 2015). However, we must be cautious with
these fruiting success results, considering that we
investigated a small C. humilis population.

Factors such as soil resource availability,
intraspecific competition, or co-pollinators could
potentially  impact  fruit initiation and
development, and overall fruit set (Thompson et
al. 1992; Fedriani et al. 2015; Garcia et al. 2018). The
involvement of co-pollinators has been described
in some specialist pollination systems. For
example, in Senita cacti, active pollination by the
nursery pollinating moth mutualism is well-
documented (Holland & Fleming 1999), and the
role of co-pollinator bees in fruit set is
environmentally dependent (Holland & Fleming
2002). Despite the apparent specialization for
pollination by weevils (Dufay & Anstett 2003;
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Dufay et al. 2004; Dufay 2010), dwarf palms have
not evolved floral traits that exclude all other
pollinators. We collected the dwarf palm co-
pollinators Meligethes rotundicolis and Meligethinus
humeralis (Audisio et al. 2009; Baviera & Audisio
2014; Garcia et al. 2018). Although both species
have the potential to influence fruit set, our results
indicate no significant effect on fruiting success,
suggesting a limited contribution. However,
further exclusion pollination experiments are
required to corroborate this finding.

In summary, our results indicate that the
presence and abundance of adult weevils are more
determined by plant sex, number of inflorescences
and anthesis periods, rather than by plant
clustering spatial patterns. However, local
neighbourhood density had a significant effect,
with higher densities correlating with reduced
weevil abundance, suggesting a balance in weevil
distribution shaped by local resource availability
and competitive interactions, rather than by the
broader spatial arrangement of palms. In terms of
pollination, despite the negative density-
dependence effect of weevil abundance, we found
evidence of positive distance-density dependence
among female palms in their fruiting success,
suggesting that dense patches may enhance
pollination efficiency and fruit set, potentially by
reducing search effort and competition among
pollinators. This spatial decoupling between
pollinator distribution and reproductive success
highlights the complex dynamics of this nursery
pollination system. The differences between the
spatial patterns of the specialist pollinator and
fruiting success at small spatial scales raise
questions about the possible implications of co-
pollinators on pollination services in the dwarf
palm. In particular, studying potential co-
pollinators and their spatial arrangement across
the population would complement the results of
our work. Our findings on the spatial pattern in
both participants of this nursery pollination
system contribute to understanding the mutualism
between C. humilis and D. chamaeropis, revealing
the presence of long-distance pollen transfer and
random-like patterns of weevil presence on plants.
Interestingly, our results support the idea that,
high pollinator mobility decouples plant spatial
structure from pollination success, as seen in other
specialized nursery pollination systems.
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