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Global and regional ecological boundaries
explain abrupt spatial discontinuities in
avian frugivory interactions

A list of authors and their affiliations appears at the end of the paper

Species interactions can propagate disturbances across space via direct and
indirect effects, potentially connecting species at a global scale. However,
ecological and biogeographic boundaries may mitigate this spread by
demarcating the limits of ecological networks. We tested whether large-scale
ecological boundaries (ecoregions and biomes) and human disturbance gra-
dients increase dissimilarity among plant-frugivore networks, while account-
ing for background spatial and elevational gradients and differences in
network sampling. We assessed network dissimilarity patterns over a broad
spatial scale, using 196 quantitative avian frugivory networks (encompassing
1496 plant and 1004 bird species) distributed across 67 ecoregions, 11 biomes,
and 6 continents. We show that dissimilarities in species and interaction
composition, but not network structure, are greater across ecoregion and
biome boundaries and along different levels of human disturbance. Our
findings indicate that biogeographic boundaries delineate the world’s biodi-
versity of interactions and likely contribute to mitigating the propagation of
disturbances at large spatial scales.

Abiotic gradients underlie the existence of a wide array of natural
ecosystems, which are the cornerstone of biological diversity on
Earth1,2. Ecoregions, defined as regional-scale terrestrial ecosystems1,
delineate regional discontinuities in the environment and in species
composition3,4, whereas biomesmark ecological boundaries at a global
scale, such that ecoregions are nestedwithinbiomes1,3 (Supplementary
Fig. 1). Accordingly, ecoregion and biomemaps have been widely used
for guiding conservation planning3,5, but it has only recently been
shown that distinct ecoregions truly represent sharp boundaries for
species composition across several taxa4.

There has been growing recognition that interactions among
species are critical for biodiversity and ecosystem functioning6 and
represent an important component of biodiversity themselves, such
that interactions may disappear well before the species involved7.
Species interactions also provide a pathway for the propagation of
disturbances via direct and indirect effects, such as secondary
extinctions and apparent competition8,9, with indirect effects of spe-
cies on others potentially being as important as direct effects10.

Moreover, adjacent habitats can sharemany interactions and function
as a single dynamic unit9,11, suggesting that the habitat boundaries
typically used by ecologists to delineate interaction networks may not
represent true boundaries11. Thus, both natural and human dis-
turbances in local communities of interacting species might reverbe-
rate and affect ecosystem functioning at multiple sites12,13, with
widespread interactions potentially connecting species at a global
scale12. However, the spread of disturbances may be hindered when
ecological interactions are arranged discontinuously into distinct
compartments14. Despite this importance, we are only beginning to
understand the connections among ecological networks at very large
scales12,13, and it remains unknown whether predictable, large-scale
discontinuities in interaction network composition (i.e., the identity of
interactions that comprisea local network) exist across ecoregions and
biomes. Such discontinuities would mark true network boundaries,
and could thus act as a barrier to the global spread of disturbances.

Because species tend to be replaced across ecosystems2,4 and
environmental conditions can favor some types of interactions over
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others (e.g., by altering the quality and detectability of interaction
partners)15, we hypothesize that ecoregions and biomes delineate the
large-scale distribution of species interactions. Specifically, we expect
to find sharp differences in the composition of species interactions
when crossing ecoregion and biome boundaries, beyond what would
be expected from spatial processes alone—which are known to drive
gradual changes in species and interaction composition15. Indeed,
distance–decay relationships have been demonstrated across spatial
and elevational gradients not only for species16, but also for ecological
networks17–19, and likely result from dispersal limitation and increasing
environmental dissimilarity with increasing geographic distance15,16.
Alternatively, ecological boundariesmight be blurred by the processes
of species and interaction homogenization (i.e., increasing similarity
among biological communities), which accompany human dis-
turbances such as land-use change and biotic invasions12,20. Thus, an
alternative hypothesis would be that shared interactions and biotic
homogenization prevent any sharp discontinuities in interaction
composition. If this is true, we expect to find a gradual decrease in the
similarity of interactions with increasing spatial distance, but no
abrupt differences in the identity of interactions from networks loca-
ted at distinct ecoregions and biomes.

Here we evaluate whether significant changes in the composi-
tion of species, the composition of interactions, and the structure of
local networks of avian frugivory are explained by large-scale eco-
logical boundaries (ecoregions and biomes) and human disturbance
gradients, while accounting for background spatial and elevational
effects. Given known patterns of species turnover across environ-
mental gradients16, we hypothesize a similar pattern of turnover in
interaction composition (hereafter, interaction dissimilarity), which
could lead to changes in the whole structure of networks (i.e.,
changes in the arrangement of interactions among species), repre-
sented here by a metric combining several descriptors of network
architecture, which we call network structural dissimilarity (see
“Methods” for more details). Notably, environmental conditions may
also affect niche partitioning and interaction specialization, poten-
tially explaining further structural differences among ecological
networks from distinct habitats and biogeographical regions15,21,22.
We focused on avian frugivory networks, that is, local communities
of interacting bird and fruiting plant species, because of their
importance for seed dispersal23, promoting species diversity24 and
regenerating degraded ecosystems25. As such, mapping the global
distribution of plant-frugivore interactions will be crucial to ensure
ecosystem functioning and resilience in a context of increasing glo-
bal changes.

In this study, we show that both ecoregion and biome bound-
aries explain abrupt spatial discontinuities in the composition of
species and their interactions within plant-avian frugivore networks.
These effects are detectable on top of the effects of spatial and ele-
vational gradients and after accounting for differences in sampling
effort and methods. Similarly, we find evidence that human dis-
turbance gradients also promote large-scale shifts in species and
interaction composition. Interestingly, despite the large (often
complete) changes observed in the composition of species and
interactions, the structure of avian frugivory networks is relatively
consistent across large-scale environmental gradients. Our results
reveal that ecoregion and biome boundaries delineate the world’s
biodiversity of interactions and may therefore contribute to miti-
gating the spread of disturbances across the global network of avian
frugivory.

Results
Overview of the analysis
To test our hypotheses, we assembled a large-scale database com-
prising 196 quantitative local networks of avian frugivory (with 9819
links between 1496 plant and 1004 bird species) distributed across 67

ecoregions, 11 biomes, and 6 continents (Supplementary Figs. 1 and 2;
Supplementary Table 1). Local networks are composed of nodes—plant
and bird species, connected by links whenever two species interact
with each other. Each local network is represented by a matrix, with
plants and birds on rows and columns, respectively, and cell values
describing the weighted network links—the number of fruit-feeding
events (i.e., interaction frequency) between a plant and bird species.
To ensure that our results would not be driven by taxonomic uncer-
tainty, we standardized the taxonomy of plant and bird species in our
local networks. For this, we extracted the frugivore and plant species
lists from all networks and performed a series of filters to remove non-
existent species names (e.g., morphospecies labels) and standardize
synonymous names according to reference databases (steps and
examples are presented graphically in Supplementary Figs. 3–6). To
account for sampling differences between networks, we controlled
statistically for network sampling metrics (i.e., hours, months, years,
intensity and methods) in our analyses (see Network sampling dis-
similarity section in “Methods”; relationships among sampling vari-
ables and network metrics are presented in Supplementary Figs. 7 and
8; variables are described in Supplementary Tables 2 and 3).

We generated several distance matrices (N ×N, where N is the
number of local networks in our dataset) to be our variables in the
statisticalmodels. Specifically, we used ecoregion, biome, local human
disturbance (measured using the human footprint index26), spatial,
elevation and sampling-related distance matrices as predictor vari-
ables, and facets of network dissimilarity (i.e., species turnover, inter-
action dissimilarity, and network structural dissimilarity) as response
variables (see a summary of our methods in Fig. 1). By evaluating these
three different facets of network dissimilarity, we were able to assess
the extent to which changes in species composition are associated
with changes in both the identity of component interactions (inter-
action dissimilarity) and the architecture of local networks (network
structural dissimilarity, which may remain the same despite turnover
of species and interactions27,28). Together these facets contribute to
greater understanding of the scale at which one ecological network
ends and another begins, and how/why networks vary across large
spatial scales15,27. We tested the significance of our predictor variables
by employing a combination of Generalized Additive Models (GAMs,
to allow for non-linear relationships among variables)29 and Multiple
Regression on distance Matrices (MRM, to account for the non-
independence associated with pairwise comparisons of local
networks)30. Essentially, this analysis is equivalent to a GAM, but where
the predictor and response variables are distance matrices and the
non-independence of distances from each local network is accounted
for in the hypothesis testing by permuting the response matrix (see
more details in the Statistical analysis section in “Methods”). Finally, we
used deviance partitioning analyses to explore the unique and shared
contributions of our predictor variables to explaining the variance in
network dissimilarity.Wedid this by fitting reducedmodels (i.e., GAMs
where one or more predictor variables of interest were removed) and
comparing the explained deviance.

Species turnover across networks
Using a binary approach—in which two ecological networks located
within the same ecoregion/biomeweregiven a valueof zero, otherwise
a one—to generate our ecoregion and biome distance matrices, we
found that the turnover of plant and frugivorous-bird species com-
position was strongly affected by ecoregion (t = −38.093; P = 0.001)
and biome (t = −8.799; P =0.001) boundaries (SupplementaryTable 4).
Trends were qualitatively similar when we assessed the effect of these
ecological boundaries using a quantitative approach based on the
environmental dissimilarity between ecoregions and biomes (Supple-
mentary Table 5; Supplementary Figs. 9a-b). Similarly, there was an
overall trend of networks located at different positions along the
human disturbance gradient having different species composition
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(F = 28.504; P =0.001) (Supplementary Fig. 9c). As expected, spatial
and elevational gradients also promoted species turnover across net-
works (Supplementary Tables 4 and 5), with spatial distance alone
accounting for the greatest proportion of deviance explained in spe-
cies turnover (12.9%), followed by the shared contribution of spatial
distance and ecoregion boundaries (11.2%) (Supplementary Fig. 10).

Interaction dissimilarity
Plant-frugivore interaction dissimilarity increased significantly across
ecoregions (t = −36.401; P =0.001), biomes (t = −3.323; P = 0.044) and
different levels of human disturbance (F = 29.988; P =0.001), even

after accounting for the effects of spatial distance, elevational differ-
ences, and sampling-related metrics (Table 1). Similar results were
found when we performed the analyses using quantitative versions of
ecoregion and biome distance matrices (Supplementary Table 6).
These findings provide strong support to the hypothesis that large-
scale ecological boundaries mark spatially abrupt discontinuities in
plant-frugivore interactions (Figs. 2 and 3; Supplementary Fig. 11).
Importantly, a great proportion of the deviance explained by biomes
was shared with ecoregions (see the overlapping areas between ecor-
egions andbiomes in Fig. 4 and Supplementary Fig. 12),which suggests
that changes in interaction dissimilarity across biome boundaries

Fig. 1 | Our approach for evaluating the multiple predictors of network dis-
similarity at large spatial scales.We used several distancematrices (N ×N, where
N is the number of local networks in our dataset) as variables in the statistical
models. a, b Maps show examples of ecoregions and biomes (colors of shaded
areas) represented inour dataset. Points indicate the locations of four network sites
used to illustrate howwegeneratedour distancematrices (see Fig. 2 to visualize the
locations of all network sites in our dataset). Ecoregion and biome distance
matrices were generated using both a binary (shown in the figure) and a quanti-
tative approach (generated by measuring the environmental dissimilarity between
ecoregions/biomes; see “Methods”). Because ecoregions are nested within biomes,
network sites located within the same ecoregion are always within the same biome,
but the opposite is not necessarily true; see, for example, the comparison between
network site 1 and network site 3, which involves two ecoregions (Southwest
Amazonmoist forest and Araucaria moist forest) from the same biome (Tropical &
SubtropicalMoist Broadleaf Forests). cThehumandisturbancedistancematrixwas
generated by calculating the absolute difference between local-scale human

footprint values around each network site. d–f Spatial distance, elevational differ-
ence and sampling-related distance metrics (i.e., sampling methods, hours,
months, years, and intensity) were used as covariates in our models to control for
distance-decay effects and differences in network sampling. Note that even though
we only depict the sampling method distance matrix in f, all sampling-related
metricswere used as predictors in themodels. g–iWeused three different facets of
network dissimilarity (i.e., species turnover, interaction dissimilarity and network
structural dissimilarity) as response variables (see Network dissimilarity section in
“Methods”). jWe tested the significance of our predictor variables by employing a
combination of Generalized Additive Models (GAM) and Multiple Regression on
distanceMatrices (MRM). In this analysis, the non-independence of distances from
each local network is accounted for by performing 1000 permutations of the
responsematrix. Ecoregions andbiomeswere definedbasedon themapdeveloped
by Dinerstein et al.3 (available at https://ecoregions.appspot.com/ under a CC-BY
4.0 license). Bird and plant silhouettes were obtained from http://phylopic.org
under a Public Domain license.
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mostly reflect the variation occurring at a finer (ecoregion) scale.
Specifically, crossing an ecoregion boundary induced an average 7%
increase in interaction dissimilarity, while crossing a biome boundary
only induced an additional 0.2% change. As with species turnover, we
found a strong effect of human disturbance gradients on interaction
composition (F = 29.998; P =0.001), such that networks at opposite
ends of the human disturbance continuum usually exhibited very dif-
ferent interactions, even if they were located within the same ecor-
egion or biome (Fig. 5; Supplementary Fig. 13).

In addition to the importance of ecological boundaries and
human disturbance gradients for driving plant-frugivore interaction
dissimilarity, these effects were observed against a background of
increasing interaction dissimilarity through space. Indeed, interac-
tion dissimilarity increased sharply until a threshold distance of
around 2500 km between network sites, beyond which few net-
works shared any interactions and dissimilarity remained close to
its peak (Fig. 6; Supplementary Fig. 14). In the cases where spatially
distant networks shared interactions, these typically involved spe-
cies that had been introduced in at least one location. For instance,
the interaction between the Blackbird Turdus merula and the
Blackberry Rubus fruticosus was shared between networks located
more than 18,000 km apart: while both species are native in Europe,
they have been introduced by humans to Aotearoa New Zealand.
Similarly, networks from Asia were connected to Hawai’i mostly
through interactions involving introduced species in the latter, such
as the Red-whiskered Bulbul Pycnonotus jocosus and the Java Plum
Syzygium cumini (Fig. 2).

Deviance partitioning revealed that the shared effect of crossing
ecoregion boundaries and spatial distance explained the greatest
proportion of the variance in plant-frugivore interaction dissimilarity
(6.41%), followed by the unique contributions of each of these two
variables (ecoregion boundaries = 4.22%; spatial distance = 1.90%;
Fig. 4). This relatively high contribution of both ecoregion and spatial
distance indicates that gradual increases in interaction dissimilarity
over space are made significantly steeper when crossing ecoregion
boundaries.

Network structural dissimilarity
Despite significant turnover in species and interaction composition,
structural dissimilarity of frugivory networks did not change sig-
nificantly across large-scale ecological boundaries and human dis-
turbancegradients, being only affected by spatial distance (F = 20.408;
P =0.021) and differences in sampling intensity (F = 238.987;
P =0.002) (Supplementary Table 7). These findings held true when
evaluating both the binary and quantitative versions of ecoregion and
biome distance matrices (Supplementary Tables 7 and 8).

All our main results were robust to different processes of
assigning uniqueness to problematic species in local networks, that is,
species without a valid epithet that could not be considered as unique
species in our dataset (see Supplementary Methods and Supplemen-
tary Tables 9–32). Finally, tests of our key hypotheses were not affec-
ted by the removal of individual studies (Supplementary Figs. 15 and
16; Supplementary Tables 33 and 34) or small networks (i.e., up to
10 species) from the dataset (see Sensitivity analysis section in the
Supplementary Methods).

Discussion
Our results support the hypothesis that large-scale ecological bound-
aries drive abrupt differences in species and interaction composition
of avian frugivory networks. Specifically, on topof the gradual effect of
spatial distance on interaction dissimilarity (whereby net-
works >2500 km apart had very few interactions in common), transi-
tions across ecoregions and biomes promoted divergence in species
interactions. These results show that ecoregions and biomes, classi-
cally defined based on environmental conditions and species
occurrences1,3,4, also carry a signature within biotic interactions.
Indeed, because the large-scale distribution of both species and
interactions is punctuated by ecoregion and biome boundaries (Fig. 2
and Supplementary Fig. 17), our findings suggest that species bio-
geography ismatched by a higher-order biogeography of interactions.
In parallel, differences in human disturbance led sites to have sig-
nificantly different species and interaction composition, which might
be partly attributed to the filtering of sensitive species and their
interactions from disturbed sites17,31. In fact, while networks from nat-
ural ecosystems usually contain interactions between native species,
which better reflect natural biogeographic patterns12 and are more
susceptible to human disturbances31, interactions from high-
disturbance regions are generally performed by generalist and intro-
duced species17,31,32. Nevertheless, despite these differences in com-
position, we found that the structure of avian frugivory networks was
relatively consistent across large-scale environmental gradients. Simi-
lar results have been reported at smaller spatial scales32, indicating that
assembly rules may generate common structural patterns in plant-
frugivore networks33 despite the shifts in species and interaction
composition that usually accompany environmental changes15.

Because most of the variation in interaction dissimilarity across
biome borders can be explained by ecoregion boundaries, preserving
the distinctness of ecoregions3,4 will likely contribute to maintaining
the natural barriers that limit the spread of disturbances across the
global network of frugivory. Unfortunately, the unique species
assemblages that comprise ecoregions have been increasingly threa-
tened by global changes3,5. In fact, the global frugivory network is
connected not only through natural processes, such as bird
migration34, but also through human-related processes. Biotic homo-
genization, in particular, has contributed to blurring biogeographical
signatures12,20 and mitigating the effect of spatial processes on inter-
action dissimilarity12. This notion is reinforced by the fact that all long-
distance (>10,000 km) connections (shared interactions) between
local networks of frugivory involved at least one region where novel
interactions performed by introduced species have largely replaced
those performed by declining or already extinct native species, such as
Aotearoa New Zealand and Hawai’i32,35 (see, for example, the shared

Table 1 | Multiple predictors of plant-frugivore interaction
dissimilarity (βWN)

Parametric coefficients Estimate t P

Intercept 0.997 2964.191 0.001

Ecoregion (same) −0.070 −36.401 0.001

Biome (same) −0.002 −3.323 0.044

Smooth Terms EDF F P

s (human disturbance
distance)

8.534 29.988 0.001

s (spatial distance) 8.785 65.378 0.001

s (elevational difference) 6.168 47.707 0.001

s (hours distance) 1.558 5.449 0.290

s (months distance) 5.482 6.902 0.075

s (years distance) 7.208 11.848 0.019

s (sampling intensity
distance)

1.018 5.182 0.259

s (methods distance) 8.632 16.002 0.005

Here, we used the binary version of ecoregion and biome distance matrices. P values were
calculated using a two-tailed statistical test that combines Generalized Additive Models (GAM)
andMultiple Regression ondistanceMatrices (MRM). In this approach, the non-independence of
distances fromeach local network is accounted for in thehypothesis testingbyperforming 1000
permutations of the response matrix (see “Methods”). EDF represents the effective degrees of
freedom for each smooth term in the model. N pairs of networks = 19,110.
Bold P values indicate statistically significant results (P <0.05).
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interactions connecting networks from Europe and Aotearoa New
Zealand in Fig. 2). Interestingly, these long-distance connections tend
to occur more frequently within than across biomes, despite a greater
proportion of network comparisons being cross-biome (Supplemen-
tary Fig. 18). This indicates that biomes may represent meaningful
boundaries not only for species, but also for novel interactions
resulting from species introductions around the world12. Notably,
because species interactions provide the pathways across which direct
and indirect effects (such as dynamic impacts of population declines,
apparent competition and trophic cascades) may propagate, spatially-
separated networks that share interactions may have coupled
dynamics and respond similarly to disturbance9,36. In fact, findings that
ecological networks in adjacent habitats may function as a single
dynamic unit9 raises questions around the scale over which two net-
works can be considered truly distinct. As a step to answering this
question, we provide empirical evidence for the existence of large-
scale boundaries between ecological networks. Consequently, our
results suggest that disturbances in local frugivory networks aremuch
less likely to impact networks from distant sites or elevations, espe-
cially if they are located within distinct ecoregions and biomes.

Although species turnover and interaction dissimilarity
responded to similar ecological drivers, species might interact
differently across environmental gradients not only because of
changes in species composition, but also because of partner
switching associated with shifts in species abundance (i.e., the
probability of random encounters), foraging behavior and co-
evolutionary patterns15. Indeed, while interactions necessarily
differ when the species involved differ27, it is possible that shared

species interact differently across sites, potentially decoupling the
relationship between species turnover and interaction dissim-
ilarity. To evaluate whether interaction rewiring (i.e., the extent to
which shared species interact differently27) increases across large-
scale environmental gradients, we used data limited to pairs of
networks sharing plant and bird species (N pairs of networks =
1314) (see Rewiring analysis section in “Methods”). We found that
interaction rewiring increased significantly across human dis-
turbance, spatial, and elevational gradients (Supplementary
Table 35), partially explaining why interactions tend to turn over
faster than species at large spatial scales (Supplementary Figs. 9d
and 14c). In fact, networks shared considerably more species than
interactions (Fig. 2 and Supplementary Fig. 17), reinforcing pre-
vious findings that plant and bird species are flexible and tend to
switch among their potential partners, even when networks have
similar species composition32. Surprisingly, we did not find an
effect of ecoregion boundaries on interaction rewiring (Supple-
mentary Table 35). This effect only became significant when
ecoregion and biome distances were the only predictors in the
model (Supplementary Table 36), probably because of their colli-
nearity with our other predictor variables (Supplementary Fig. 19).

As with other large-scale studies of ecological networks12,37, our
data were not evenly spread across the globe, which likely affected the
observed patterns. For instance, around 59% of our networks were
located within a single biome—the Tropical & Subtropical Moist
Broadleaf Forests (Supplementary Fig. 2). Because ecoregions tend to
be more distinct in tropical than in temperate zones38, the greater
number of networks from tropical ecosystems (which also possess

Fig. 2 | Plant–frugivore interactions shared among local networks, ecoregions,
and biomes. a World map with points representing the 196 avian frugivory net-
works in our dataset. Colors of shaded areas represent the 67 ecoregions where
networks were located, with similar colors indicating ecoregions that belong to the
same biome. Lines represent the connections (shared interactions) plotted along
the great circle distance between networks, with most of these connections
occurring within (blue lines) rather than across (red lines) biomes. Stronger color
tones of lines indicate higher similarity of interactions (1-βWN) between networks.
Connections across continents weremostly attributed to introduced species in one

of these regions. Lines disappearing at the side edges of the world map are con-
nected to those fromtheopposite edge. Photos show someof the frugivorousbirds
present in our dataset. Inset maps depict three regions with many networks and
connections (especiallywithin biomes).b SouthAmerica.c Europe.dAotearoaNew
Zealand. Photo credits: R.Heleno (top left andbottom right); R. B.Missano (bottom
left); J. M. Costa (top right). Ecoregions and biomes were defined based on themap
developed byDinerstein et al.3 (available at https://ecoregions.appspot.com/ under
a CC-BY 4.0 license). Source data are provided as a Source Data file.
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most of the world’s ecoregions3) may have contributed to the strong
observed effect of ecoregion boundaries on interaction dissimilarity.
Nevertheless, both species richness and the proportion of frugivorous
birds reach their peaks in the Tropics39, suggesting that the distribu-
tion of networks in our dataset partially mirrors the global distribution
of avian frugivory. We also highlight that the ecoregions and biomes
represented in our dataset cover around 20% and 69%, respectively, of
the world’s ice-free land surface. As such, network sampling in data
deficient regions37, especially at the ecoregion scale, may contribute
greatly to our understanding of macroecological patterns in avian
frugivory networks. Importantly, the extent to which our results apply
for other frugivorous taxa (such as mammals and reptiles) and inter-
action types remains to be investigated. Previous findings, however,
indicate that less-mobile taxa tend to show a stronger adherence to
ecological boundaries38, a pattern that is likely to be reflected in spe-
cies interactions. This is corroborated here by the fact that networks
located at distinct ecoregions and biomes tended to share more bird
than plant species (Supplementary Fig. 17).

This work provides evidence that ecological boundaries and
human disturbance gradients delineate the large-scale spatial
distribution of species and their interactions. Nevertheless, net-
work structure remained relatively consistent across broad-scale
environmental gradients. This suggests that the processes
underlying the architecture of frugivory networks, such as eco-
logical specialization40 and species’ functional roles41, may be
reasonably independent of the identity of interacting species19.
By demonstrating the validity of the ecoregion-based approach1,3

for species interactions, our results have important implications
for maintaining the world’s biodiversity of interactions and the
myriad ecological functions they provide.

Methods
Dataset acquisition
Plant-frugivore network data were obtained through different online
sources and publications (Supplementary Table 1). Only networks that
met the following criteria were retrieved: (i) the network contains
quantitative data (ameasure of interaction frequency) from a location,
pooling through time if necessary; (ii) the network includes avian
frugivores. Importantly, we removed non-avian frugivores from our
analyses because only 28 out of 196 raw networks (before data clean-
ing) sampled non-avian frugivores, and not removing non-avian fru-
givores would generate spurious apparent turnover between networks
that did vs. did not sample those taxa. In addition, the removal of non-
avian frugivores did not strongly decrease the number of frugivores in
our dataset (Supplementary Fig. 20a)or the total number of links in the
global network of frugivory (Supplementary Fig. 20b). Furthermore,
non-avian frugivores, as well as their interactions, were not shared
across ecoregions and biomes (Supplementary Fig. 21), so their
inclusionwould only strengthen the results we found (though asnoted
above, we believe that this would be spurious because they are not as
well sampled); (iii) the network (after removal of non-avian frugivores)
contains greater than two species in each trophic level. Because this
size thresholdwas somewhat arbitrary, weused a sensitivity analysis to
assess the effect of our network size threshold on the reported pat-
terns (see Sensitivity analysis section in the Supplementary Methods
and Supplementary Figs. 22–24); and (iv) network sampling was not
taxonomically restricted, that is, sampling was not focused on a spe-
cific taxonomic group, such as a given plant or bird family. Note,
however, that authors often select focal plants or frugivorous birds to
be sampled, but this was not considered as a taxonomic restriction if
plants and birds were not selected based on their taxonomy (e.g., focal
plants were selected based on the availability of fruits at the time of
sampling, or focal birds were selected based on previous studies of
bird diet in the study site). The first source for network data was the
Web of Life database42, which contains 33 georeferenced plant-
frugivore networks from 28 published studies, of which 12 networks
met our criteria.

We also accessed the Scopus database on 04 May 2020 using the
following keyword combination: (“plant-frugivore*” OR “plant-bird*”
OR “frugivorous bird*” OR “avian frugivore*” OR “seed dispers*”) AND
(“network*”OR “web*”) to search for papers that include data on avian
frugivory networks. The search returned a total of 532 studies, from
which 62 networks that met the above criteria were retrieved. We also
contacted authors to obtain plant-frugivore networks that were not
publicly available, which provided us a further 110 networks. The
remaining networks (N = 12) were obtained by checking the database
from a recently published study12. In total, 196 quantitative avian fru-
givory networks were used in our analyses.

Generating the distance matrices to serve as predictor and
response variables
Ecoregion and biome distances. We used the most up-to-date (2017)
map of ecoregions and biomes3, which divides the globe into 846
terrestrial ecoregions nested within 14 biomes, to generate our ecor-
egion and biome distance matrices. Of these, 67 ecoregions and 11
biomes are represented in our dataset (Supplementary Figs. 1 and 2).
We constructed two alternative versions of both the ecoregion and
biome distance matrices. In the first, binary version, if two ecological
networks were from localities within the same ecoregion/biome, a
dissimilarity of zero was given to this pair of networks, whereas a
dissimilarity of one was given to a pair of networks from distinct
ecoregions/biomes (this is the same as calculating the Euclidean dis-
tance on a presence–absence matrix with networks in rows and ecor-
egion/biomes in columns).

In the second, quantitative version, we estimated the pairwise
environmental dissimilarity between our ecoregions and biomes using

Same
Distinct

Ecoregion

Same
Distinct

Biome

Fig. 3 | The effects of ecological boundaries on interaction dissimilarity (βWN).
Histograms and inset quantile-quantile (Q–Q) plots showing differences in the
distributions of interaction dissimilarity values between pairs of networks located
within (“same”) and across (“distinct”) ecoregions and biomes. The effects of
ecoregion and biome boundaries were significant, even after controlling for the
other predictor variables in the model (Table 1). We square root transformed the
x-axis scale to allow a better visualization of the distribution of data points (pairs of
networks) with interaction dissimilarity values <1. Source data are provided as a
Source Data file.
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six environmental variables recently demonstrated to be relevant in
predicting ecoregion distinctness, namely mean annual temperature,
temperature seasonality, mean annual rainfall, rainfall seasonality,
slope and human footprint38. We obtained climatic and elevation data
from WorldClim 2.143 at a spatial resolution of 1-km2. We transformed
the elevation raster into a slope raster using the terrain function from
the raster package44 in R45. As a measure of human disturbance, we
used human footprint—a metric that combines eight variables asso-
ciatedwith humandisturbances of the environment: the extent of built
environments, crop land, pasture land, human population density,
night-time lights, railways, roads and navigable waterways26. The
human footprint raster was downloaded at a 1-km2 resolution26.
Because human footprint data were not available for one of our
ecoregions (Galápagos Islands xeric scrub), we estimated human
footprint for this ecoregion by converting visually interpreted scores
into the human footprint index. We did this by analyzing satellite
images of the region and following a visual score criterion26. Given the
previously demonstrated strong agreement between visual score and
human footprint values26, we fitted a linear model using the visual
score and human footprint data from 676 validation plots located
within theDeserts and xeric shrublands biome - the biome inwhich the
Galápagos Islands xeric scrub ecoregion is located - and estimated the
human footprint values for our own visual scores using the predict
function in R45.

Weused 1-km2 resolution rasters and the extract function from the
raster package44 to calculate the mean value of each of our six envir-
onmental variables for each ecoregion in our dataset. Because biomes
are considerably larger than ecoregions (which makes obtaining
environmental data for biomes more computationally expensive) we
used a coarser spatial resolution of 5-km2 for calculating the mean
values of environmental variables for each biome. Since a 5-km2 reso-
lution raster was not available for human footprint, we transformed
the 1-km2 resolution raster into a 5-km2 raster using the resample
function from the same package.

To combine these six environmental variables into quantitative
matrices of ecoregion and biome environmental dissimilarity, we
ran a Principal Component Analysis (PCA) on our scaled multi-
variate data matrix (where rows are ecoregions or biomes and col-
umns are environmental variables). From this PCA, we selected the
scores of the four and three principal components, which

represented 89.6% and 88.7% of the variance for ecoregions and
biomes, respectively, and converted it into a distance matrix by
calculating the Euclidean distance between pairs of ecoregions/
biomes using the vegdist function from the vegan package46. Finally,
we transformed the ecoregion or biome distance matrix into a N ×N
matrix where N is the number of local networks. In this matrix, cell
values represent the pairwise environmental dissimilarity between
the ecoregions/biomes where the networks are located. The main
advantage of using this quantitative approach is that, instead of
simply evaluating whether avian frugivory networks located in dis-
tinct ecoregions or biomes are different from each other in terms of
network composition and structure (as in our binary approach), we
were also able to determine whether the extent of network dis-
similarity depended on how environmentally different the ecor-
egions or biomes are from one another.

Local-scale human disturbance distance. To generate our local
human disturbance distance matrix, we extracted human footprint
data at a 1-km2 spatial resolution26 and calculated the mean human
footprint values within a 5-km buffer zone around each network site.
For the networks located within the Galápagos Islands xeric scrub
ecoregion (N = 4), we estimated the human footprint index using the
same method described in the previous section for ecoregion- or
biome-scale human footprint. We then calculated the pairwise Eucli-
deandistancebetweenhuman footprint values fromour network sites.
Thus, low cell values in the local human disturbance distance matrix
indicate pairs of network sites with a similar level of human dis-
turbance, while high values represent pairs of network sites with very
different levels of human disturbance.

Spatial distance. The spatial distance matrix was generated using the
Haversine (i.e., great circle) distance between all pairwise combina-
tions of network coordinates. In this matrix, cell values represent the
geographical distance between network sites.

Elevational difference. We calculated the Euclidean distance between
pairwise elevation values (estimated as meters above sea level) of
network sites to generate our elevational difference matrix. Elevation
valueswereobtained from the original sourceswhen available or using
Google Earth47. In the elevational difference matrix, low cell values
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Fig. 4 | Venn diagrams showing the relative contributions (%) of our main
predictor variables to explaining the variation in interaction dissimilarity
(βWN), calculated using deviance partitioning. Overlapping areas represent
deviance that is jointly explained by one ormore predictor variables. a The relative
contributions of ecoregion, biome, spatial and human disturbance (i.e., footprint)
distances. In b, we replace human disturbance distancewith elevational difference;

we show these two separate diagrams for visualization purposes, but Supplemen-
tary Fig. 12 shows the effect of all our main predictor variables together. Note that
we only plot our predictor variables of interest (i.e., not those used for controlling
sampling effects). Terms that reduce explanatory power are not shown. Source
data are provided as a Source Data file.
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represent pairs of network sites within similar elevations, whereas high
values represent pairs of network sites within very different elevations.

Network sampling dissimilarity. We used the metadata retrieved
from each of our 196 local networks to generate our network sampling
dissimilarity matrices, which aim to control statistically for differences
in network sampling. There are many ways in which sampling effort
could be quantified, so we began by calculating a variety of metrics,
then narrowed our options by assessing which of these was most
related to network metrics. We divided the sampling metrics into two
categories: time span-related metrics (i.e., sampling hours and
months) and empirical metrics of sampling completeness (i.e., sam-
pling completeness and sampling intensity), which aim to account for
how complete network sampling was in terms of species interactions
(Supplementary Table 2).

We selected the quantitative sampling metrics to be included in
our models based on (i) the fit of generalized linearmodels evaluating
the relationship between number of sampling hours and sampling
months of the study andnetwork-levelmetrics (i.e., bird richness, plant
richness and number of links), and (ii) how well time span-related

metrics, sampling completeness and sampling intensity predicted the
proportion of known interactions that were sampled in each local
network (hereafter, ratio of interactions) for a subset of the data. This
latter metric, defined as the ratio between the number of interactions
in the local network and the number of known possible interactions in
the region involving the species in the local network, captures raw
sampling completeness. Therefore, ratio of interactions estimates, for
a given set of species, the proportion of all their interactions known for
a region that are found to occur among those same species in the local
network. To calculate this metric, we needed high-resolution infor-
mation on the possible interactions, soweused a subset of 14 networks
sampled in Aotearoa New Zealand, since there is an extensive compi-
lation of frugivory events recorded for this country48. After this pro-
cess, we selected number of sampling hours, number of sampling
months and sampling intensity for inclusion in our statistical models
(Supplementary Figs. 7 and 8; Supplementary Table 2). We generated
the corresponding distance matrices by calculating the Euclidean
distance between metric values. Similarly, we generated a Euclidean
distance matrix for differences in sampling year between pairs of
networks, which aims to account for long-term changes in the envir-
onment, species composition and network sampling methods. We
obtained the sampling year of our local networks from the original
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Fig. 6 | Partial effects plot of the relationship between spatial distance and
interaction dissimilarity (βWN). Here, we show the fit (solid line) of a Generalized
AdditiveModel (GAM)with interactiondissimilarity as the response variable and all
our predictor variables included. Thus, this plot shows the effect of spatial distance
on interaction dissimilarity, while controlling for the effect of the other predictor
variables in the model. Partial residuals remain on the same scale as the original
data, but the sign of values indicates how they differ from what would be expected
(i.e., from thefittedvalues) basedon theotherpredictor variables in themodel. The
gray area represents two standard errors above and below the estimate of the
smooth being plotted. The histogram above the plot shows the distribution of data
points across the spatial gradient. Note the sharp increase in interaction dissim-
ilarity until a threshold distance of around 2500 km(dotted red line), beyondwhich
few networks shared interactions (a similar pattern can be seen in Supplementary
Fig. 14c). Source data are provided as a Source Data file.
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Fig. 5 | The effect of human disturbance gradients on interaction dissimilarity
(βWN). The relationship between human disturbance distance and interaction dis-
similarity, with a fitted line obtained fromaGeneralized AdditiveModel (GAM)with
human disturbance distance as the only predictor variable (Supplementary Fig. 13
shows the partial effects plot for the model including all predictors). Human dis-
turbance distance was calculated as the absolute difference in human footprint
values between a pair of network sites. Eachdata point (pair of networks) is colored
according to the mean of the human footprint values from the two networks. The
histogram above the plot shows the distribution of data points across the human
disturbance gradient. To explore whether disturbance distance and the mean
intensity of disturbance are related, we further divided our data into three equal
sized groups (top three histograms) based on their mean (of the site pair) footprint
values: “Less” disturbed (low mean footprint), ‘Mix’ (medium mean footprint) and
‘More’ disturbed (high mean footprint). Dashed lines mark the 90th percentile
position in each histogram. Note that data points from less disturbed site pairs are
skewed towards low values of human disturbance distance, whereas pairs of more
disturbed sites also had a larger average distance. Source data are provided as a
Source Data file.
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sources and calculated the mean sampling year value for those net-
works sampled across multiple years.

Because sampling methods, such as sampling design, focus (i.e.,
focal taxa, which determines whether a zoocentric or phytocentric
method was used), interaction frequency type (i.e., how interaction
frequency was measured) and coverage (total or partial) might also
affect the observed plant-frugivore interactions49, we combined these
variables into a single distance matrix to estimate the overall differ-
ences in sampling methods between networks. Because most of these
variables were categorical with multiple levels (Supplementary
Table 3), we generated our method’s dissimilarity matrix by using a
generalization of Gower’s distance method50, which allows the treat-
ment of different types of variables when calculating distances. For
this, we used the dist.ktab function from the ade4 package51. We ran a
Principal Coordinates Analysis (PCoA) on this distancematrix, selected
the first four axes, which explained 81.2% of the variation in method’s
dissimilarity, and calculated the Euclidean distance between pairs of
networks using the vegdist function from the vegan package46 in R45.

Network dissimilarity. We generated three network dissimilarity
matrices to be our response variables in the statistical models. In the
first, cell values represent the pairwise dissimilarity in species com-
position between networks (beta diversity of species;βS)

27. Second, we
measured interactiondissimilarity (beta diversity of interactions;βWN),
which represents the pairwise dissimilarity in the identity of interac-
tions between networks27. Importantly, we did not include interaction
rewiring (βOS) in our main analysis because this metric can only be
calculated for networks that share interaction partners (i.e., it esti-
mates whether shared species interact differently)27, which limited the
number and the spatial distribution of networks available for analysis
(but see the Rewiring analysis section for an analysis on the subset of
our dataset for which this was possible). Metrics were calculated using
the network_betadiversity function from the betalink package52 in R45.

Finally,wecalculated a thirddissimilaritymatrix to capture overall
differences in network structure. We recognize that there are many
potential metrics of network structure, and that many of these are
strongly correlated with one another53–56. We therefore chose a range
of metrics that captured the number of links, their relative weightings
(including across trophic levels), and their arrangement among spe-
cies, then combined these into a singledistancematrix. Specifically,we
quantified network structural dissimilarity using the followingmetrics:
weighted connectance, weighted nestedness, interaction evenness,
PDI and modularity.

Weighted connectance represents the number of links relative to
the number of possible links, weighted by the frequency of each
interaction55, and is therefore a measure of network-level specializa-
tion (higher values of weighted connectance indicate lower speciali-
zation). Importantly, it has been suggested that connectance affects
persistence inmutualistic systems54.Wemeasured nestedness (i.e., the
pattern in which specialist species interact with proper subsets of the
species that generalist species interact with) using the weighted ver-
sion of nestedness based on overlap and decreasing fill (wNODF)57.
Notably, nested structures have been commonly reported in plant-
frugivore networks33. Interaction evenness is Shannon’s evenness
index applied for species interactions and represents how evenly dis-
tributed the interactions are in the network21,58. This metric has been
previously demonstrated to decline with habitat modification as a
consequence of some interactions being favored over others in high-
disturbance environments21. PDI (PairedDifference Index) is ameasure
of species-level specialization on resources and a reliable indicator not
only of specialization, but also of absolute generalism59. Thus, this
metric contributes to understanding of the ecological processes that
drive the prevalence of specialists or generalists in ecological
networks59. In order to obtain a network-level PDI, we calculated the
weighted mean PDI for each local network. Finally, we calculated

modularity (i.e., the level of compartmentalization within networks)
using theDIRTPLAwb+ algorithm60. Modularity estimates the extent to
which species withinmodules interactmore with each other than with
species from other modules61, and it has been demonstrated to affect
the persistence and resilience of mutualistic networks54. All the selec-
ted network metrics are based on weighted (quantitative) interaction
data, as these have been suggested to be less biased by sampling
incompleteness62 and to better reflect environmental changes21. All
network metrics were calculated using the bipartite package63 in R45.

We ran a Principal Component Analysis (PCA) on our scaled
multivariate data matrix (N ×M where N is the number of local net-
works inour dataset andM is the number of networkmetrics), selected
the scores of the three principal components, which represented
89.9% of the variance in network metrics, and converted it into a
network structural dissimilarity matrix by calculating the Euclidean
distance between networks. In this distance matrix, cell values repre-
sent differences in the overall architecture of networks (over all the
network metrics calculated), and therefore provide a complementary
approach for evaluating how species interaction patterns vary across
large-scale environmental gradients.

Statistical analysis
We employed a two-tailed statistical test that combines Generalized
Additive Models (GAM)29 and Multiple Regression on distance Matri-
ces (MRM)30 to evaluate the effect of each of our predictor distance
matrices on our response matrix. With this approach, we were able to
fit GAMs where the predictor and responsible variables are distance
matrices, while accounting for the non-independence of distances
fromeach local networkbypermuting the responsematrix30. Themain
advantage of using GAMs is their flexibility in modeling non-linear
relationships through smooth functions, which are represented by a
sum of simpler, fixed basis functions that determine their
complexity29. Using GAM-based MRM models allowed us to obtain F
values for each of the smooth terms (i.e., smooth functions of the
predictor variables in ourmodel), and test statistical significance at the
level of individual variables. The binary versions of ecoregion and
biome distance matrices (with two levels, “same” or “distinct”) were
treated as categorical variables in the models, and t values were used
for determining statistical significance. We fitted GAMs with thin plate
regression splines64 using the gam function from the mgcv package29

in R45. Smoothing parameters were estimated using restricted max-
imum likelihood (REML)29. Our GAM-based MRM models were calcu-
lated using a modified version of the MRM function from the ecodist
package65, which allowed us to combine GAMs with the permutation
approach from the original MRM function (see Code availability). All
themodels were performed with 1000 permutations (i.e., shuffling) of
the response matrix.

We explored the unique and shared contributions of our pre-
dictor variables to network dissimilarity using deviance partitioning
analyses. These were performed by fitting reduced models (i.e., GAMs
whereoneormorepredictor variables of interest were removed) using
the same smoothing parameters as in the full model and comparing
the explained deviance. We fixed smoothing parameters for compar-
isons in this way because these parameters tend to vary substantially
(to compensate) if one of two correlated predictors is dropped
from a GAM.

Assessing the influence of individual studies on the reported
patterns
Because our dataset comprises 196 local frugivory networks obtained
from 93 different studies, and some of these studies contained mul-
tiple networks, we needed to evaluate whether our results were
strongly biased by individual studies. To do this, we followed the
approach from a previous study66 and tested whether F values of
smooth terms and t values of categorical variables (binary version of
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ecoregion and biome distances) changed significantly when jack-
knifing across studies. We did this by dropping one study from the
dataset and re-fitting themodels, and then repeating this sameprocess
for all the studies in our dataset.

We found a number of consistent patterns within different sub-
sets of the data (Supplementary Figs. 15 and 16); however, some of the
patterns we observed appear to be driven by individual studies with
multiple networks, and hence are less representative. For instance, the
study with the greatest number of networks in our dataset (study
ID = 76),whichcontains 35plant-frugivorenetworks sampled across an
elevation gradient in Mt. Kilimanjaro, Tanzania67, had an overall high
influence on the results when compared with the other studies. By re-
running our GAM-based MRMmodels after removing this study from
our dataset, we found that the effect of biome boundaries on inter-
action dissimilarity is no longer significant, whereas the effects of
ecoregion boundaries, human disturbance distance, spatial distance
and elevational differences remained consistent with those from the
full dataset (Supplementary Table 33). Nevertheless, all the results
were qualitatively similar to thoseobtained for the entire dataset when
using network structural dissimilarity as the response variable (Sup-
plementary Table 34).

Rewiring analysis
Interaction rewiring (βOS) estimates the extent to which shared species
interact differently27. Because this metric can only be calculated for
networks that share species from both trophic levels, we selected a
subset of network pairs that shared plants and frugivorous birds
(N = 1314) to test whether interaction rewiring increases across large-
scale environmental gradients. Importantly, since not all possible
combinations of network pairs contained values of interaction rewir-
ing (i.e., not all pairs of networks shared species), a pairwise distance
matrix could not be generated for this metric. Thus, we were not able
to use the same statistical approach used in ourmain analysis, which is
based on distance matrices (see Statistical analysis section). Instead,
we performed a Generalized Additive Mixed-effects Model (GAMM)
using ecoregion, biome, human disturbance, spatial, elevational, and
sampling-related distance metrics as fixed effects and network IDs as
random effects (to account for the non-independence of distances)
(Supplementary Table 35). We also performed a reduced model with
only ecoregion and biome distance metrics as predictor variables
(Supplementary Table 36). The binary version of ecoregion and biome
distance metrics (with two levels, “same” or “distinct”) were used as
categorical variables in both models. Interaction rewiring (βOS) was
calculated using the network_betadiversity function from the betalink
package52 in R45. Although it has been recently argued that this metric
may overestimate the importance of rewiring for network
dissimilarity68, our main focus was not the partitioning of network
dissimilarity into species turnover and rewiring components, but
rather simply detecting whether the sub-web of shared species inter-
acted differently. In this case, βOS (as developed by ref. 27) is an ade-
quate and useful metric68. We fitted our models using the gamm4
function from the gamm4 package69 in R45. Smoothing parameters
were estimated using restricted maximum likelihood (REML)29.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data necessary to reproduce the analyses of this manuscript have
been deposited in the Dryad database: https://doi.org/10.5061/dryad.
mcvdnck4d (ref. 70). Metadata of the plant-frugivore networks, and
predictor and response variables used in our analyses are provided
with this paper as SupplementaryData. The Ecoregions 2017©Resolve
map developed by ref. 3 is available at https://ecoregions.appspot.

com/ under a CC-BY 4.0 license. Human footprint data are publicly
available at https://doi.org/10.5061/dryad.052q5 (ref. 71). The World-
Clim 2.1 database43 is publicly available at https://www.worldclim.org/.
The following taxonomic databases were used for standardizing the
taxonomy of plant and bird species in our dataset: Global Names
Resolver (GNR) (available at https://resolver.globalnames.org/),
National Center for Biotechnology Information (NCBI) (available at
https://ncbi.nlm.nih.gov/), BirdLife International (available at http://
datazone.birdlife.org/species/taxonomy), Avibase (available at https://
avibase.bsc-eoc.org/), Integrated Taxonomic Information System
(ITIS) (available at https://itis.gov/), International Plant Names Index
(IPNI) (available at https://www.ipni.org/), Tropicos (available at
https://www.tropicos.org/), and the iPlant Taxonomic Name Resolu-
tion Service72 (available at https://tnrs.biendata.org/). Source data are
provided with this paper.

Code availability
R scripts for reproducing the analyses of this manuscript are available
at https://doi.org/10.5061/dryad.mcvdnck4d (ref. 70).

References
1. Olson, D. M. et al. Terrestrial ecoregions of the world: a newmap of

life on Earth. Bioscience 51, 933–938 (2001).
2. Gaston, K. J. Global patterns in biodiversity. Nature 405,

220–227 (2000).
3. Dinerstein, E. et al. An ecoregion-based approach to protecting half

the terrestrial realm. Bioscience 67, 534–545 (2017).
4. Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2,

1889–1896 (2018).
5. Dinerstein, E. et al. A global deal for nature: guiding principles,

milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).
6. Schleuning, M., Fründ, J. & García, D. Predicting ecosystem func-

tions from biodiversity and mutualistic networks: an extension of
trait-based concepts to plant-animal interactions. Ecography 38,
380–392 (2015).

7. Valiente-Banuet, A. et al. Beyond species loss: the extinction of
ecological interactions in a changing world. Funct. Ecol. 29,
299–307 (2015).

8. Schleuning, M. et al. Ecological networks are more sensitive to
plant than to animal extinction under climate change. Nat. Com-
mun. 7, 13965 (2016).

9. Frost, C. M. et al. Apparent competition drives community-wide
parasitism rates and changes in host abundance across ecosystem
boundaries. Nat. Commun. 7, 12644 (2016).

10. Menge, B. A. Indirect effects in marine rocky intertidal interaction
webs: patterns and importance. Ecol. Monogr. 65, 21–74 (1995).

11. Timóteo, S., Correia, M., Rodríguez-Echeverría, S., Freitas, H. &
Heleno, R. Multilayer networks reveal the spatial structure of seed-
dispersal interactions across the Great Rift landscapes. Nat. Com-
mun. 9, 140 (2018).

12. Fricke, E. C. & Svenning, J. C. Accelerating homogenization of
the global plant–frugivore meta-network. Nature 585, 74–78
(2020).

13. Albouy, C. et al. The marine fish food web is globally connected.
Nat. Ecol. Evol. 3, 1153–1161 (2019).

14. Stouffer, D. B. & Bascompte, J. Compartmentalization increases
food-web persistence. Proc. Natl. Acad. Sci. USA 108, 3648–3652
(2011).

15. Tylianakis, J. M. & Morris, R. J. Ecological networks across environ-
mental gradients. Annu. Rev. Ecol. Evol. Syst. 48, 25–48 (2017).

16. Qian, H. & Ricklefs, R. E. Disentangling the effects of geographic
distance and environmental dissimilarity on global patterns of
species turnover. Glob. Ecol. Biogeogr. 21, 341–351 (2012).

17. Emer, C. et al. Seed-dispersal interactions in fragmented land-
scapes – a metanetwork approach. Ecol. Lett. 21, 484–493 (2018).

Article https://doi.org/10.1038/s41467-022-34355-w

Nature Communications |         (2022) 13:6943 10

https://doi.org/10.5061/dryad.mcvdnck4d
https://doi.org/10.5061/dryad.mcvdnck4d
https://ecoregions.appspot.com/
https://ecoregions.appspot.com/
https://doi.org/10.5061/dryad.052q5
https://www.worldclim.org/
https://resolver.globalnames.org/
https://ncbi.nlm.nih.gov/
http://datazone.birdlife.org/species/taxonomy
http://datazone.birdlife.org/species/taxonomy
https://avibase.bsc-eoc.org/
https://avibase.bsc-eoc.org/
https://itis.gov/
https://www.ipni.org/
https://www.tropicos.org/
https://tnrs.biendata.org/
https://doi.org/10.5061/dryad.mcvdnck4d


18. Quitián, M. et al. Elevation-dependent effects of forest fragmenta-
tion on plant-bird interaction networks in the tropical Andes. Eco-
graphy 41, 1497–1506 (2018).

19. Dehling, D. M. et al. Similar composition of functional roles in
Andean seed‐dispersal networks, despite high species and inter-
action turnover. Ecology 101, e03028 (2020).

20. Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The
dispersal of alien species redefines biogeography in the Anthro-
pocene. Science 348, 1248–1251 (2015).

21. Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification
alters the structure of tropical host-parasitoid food webs. Nature
445, 202–205 (2007).

22. Dugger, P. J. et al. Seed-dispersal networks are more specialized in
the Neotropics than in the Afrotropics. Glob. Ecol. Biogeogr. 28,
248–261 (2019).

23. Jordano, P. Fruits and Frugivory in Seeds: The Ecology of Regen-
eration in Plant Communities, 3nd edn. (ed. Gallagher, R.S.) 18–61
(CABI, Wallingford, UK, 2014).

24. Onstein, R. E. et al. Frugivory-related traits promote speciation of
tropical palms. Nat. Ecol. Evol. 1, 1903–1911 (2017).

25. Wunderle, J. M. The role of animal seed dispersal in accelerating
native forest regeneration on degraded tropical lands. Ecol. Manag.
99, 223–235 (1997).

26. Venter, O. et al. Global terrestrial Human Footprint maps for 1993
and 2009. Sci. Data 3, 160067 (2016).

27. Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The
dissimilarity of species interaction networks. Ecol. Lett. 15,
1353–1361 (2012).

28. Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P. &
Pantis, J. D. Long-term observation of a pollination network: fluc-
tuation in species and interactions, relative invariance of network
structure and implications for estimates of specialization. Ecol. Lett.
11, 564–575 (2008).

29. Wood, S. N. Generalized Additive Models: An Introduction with R,
2nd edn. (Chapman and Hall/CRC, London, 2017).

30. Lichstein, J. W. Multiple regression on distance matrices: a multi-
variate spatial analysis tool. Plant Ecol. 188, 117–131 (2007).

31. McConkey, K. R. et al. Seed dispersal in changing landscapes. Biol.
Conserv. 146, 1–13 (2012).

32. Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of
novel seed dispersal mutualistic networks in Hawai’i. Science 364,
78–82 (2019).

33. Bascompte, J., Jordano, P., Melian, C. J. & Olesen, J. M. The nested
assembly of plant-animal mutualistic networks. Proc. Natl. Acad.
Sci. USA 100, 9383–9387 (2003).

34. Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global
dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).

35. García, D., Martínez, D., Stouffer, D. B. & Tylianakis, J. M. Exotic birds
increase generalization and compensate for native bird decline in
plant-frugivore assemblages. J. Anim. Ecol. 83, 1441–1450 (2014).

36. García-Callejas, D., Molowny-Horas, R., Araújo, M. B. & Gravel, D.
Spatial trophic cascades in communities connected by dispersal
and foraging. Ecology 100, e02820 (2019).

37. Poisot, T. et al. Global knowledge gaps in species interaction net-
works data. J. Biogeogr. 48, 1552–1563 (2021).

38. Smith, J. R., Hendershot, J. N., Nova, N. & Daily, G. C. The biogeo-
graphy of ecoregions: descriptive power across regions and taxa. J.
Biogeogr. 47, 1413–1426 (2020).

39. Kissling, W. D., Böhning-Gaese, K. & Jetz, W. The global distribution
of frugivory in birds. Glob. Ecol. Biogeogr. 18, 150–162 (2009).

40. K. Schleuning, M. et al. Specialization and interaction strength in a
tropical plant—frugivore network differ among forest strata. Ecol-
ogy 92, 26–36 (2011).

41. Dehling, D. M., Jordano, P., Schaefer, H. M., Böhning-Gaese, K. &
Schleuning, M. Morphology predicts species’ functional roles and

their degree of specialization in plant–frugivore interactions. Proc.
R. Soc. B Biol. Sci. 283, 20152444 (2016).

42. Fortuna,M.A., Ortega, R.&Bascompte, J. Thewebof life. Preprint at
https://arxiv.org/abs/1403.2575 (2014).

43. Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution
climate surfaces for global land areas. Int. J. Climatol. 37,
4302–4315 (2017).

44. Hijmans, R. J. raster: geographic data analysis and modeling. R
package version 3.1-5. https://CRAN.R-project.org/package=
raster (2020).

45. R Core Team. R: a language and environment for statistical com-
puting (R Foundation for Statistical Computing, Vienna, Aus-
tria, 2020).

46. Oksanen J. et al. vegan: community ecology package. R package
version 2.5-3. http://CRAN.R-project.org/package=vegan (2020).

47. Google Earth. https://www.google.com/earth/ (2020).
48. Peralta,G., Perry,G. L.W., Vázquez, D. P., Dehling,D.M.&Tylianakis,

J. M. Strength of niche processes for species interactions is lower
for generalists and exotic species. J. Anim. Ecol. 89, 2145–2155
(2020).

49. Jordano, P. Sampling networks of ecological interactions. Funct.
Ecol. 30, 1883–1893 (2016).

50. Pavoine, S., Vallet, J., Dufour, A. B., Gachet, S. & Daniel, H. On the
challenge of treating various types of variables: application for
improving the measurement of functional diversity. Oikos 118,
391–402 (2009).

51. Dray, S. &Dufour, A. B. The ade4package: implementing theduality
diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).

52. Poisot, T. betalink: beta-diversity of species interactions. R package
version 2.2.1. https://CRAN.R-project.org/package=betalink (2016).

53. Banašek-Richter, C. et al. Complexity in quantitative food webs.
Ecology 90, 1470–1477 (2009).

54. Thébault, E. & Fontaine, C. Stability of ecological communities and
the architecture of mutualistic and trophic networks. Science 329,
853–856 (2010).

55. Bersier, L. F., Banasek-Ricther, C. & Cattin, M. F. Quantitative
descriptors of food-web matrices. Ecology 83, 2934–2407 (2002).

56. Fortuna, M. A. et al. Nestedness versus modularity in ecological
networks: two sides of the same coin? J. Anim. Ecol. 79,
811–817 (2010).

57. Almeida-Neto, M. & Ulrich, W. A straightforward computational
approach for measuring nestedness using quantitative matrices.
Environ. Model. Softw. 26, 173–178 (2011).

58. Blüthgen, N., Fründ, J., Vazquez, D. P. & Menzel, F. What do inter-
action network metrics tell us about specialization and biological
traits? Ecology 89, 3387–3399 (2008).

59. Poisot, T., Canard, E., Mouquet, N. & Hochberg, M. E. A comparative
study of ecological specialization estimators.Methods Ecol. Evol. 3,
537–544 (2012).

60. Beckett, S. J. Improved community detection in weighted bipartite
networks. R. Soc. Open Sci. 3, 140536 (2016).

61. Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The mod-
ularity of pollination networks. Proc. Natl. Acad. Sci. USA 104,
19891–19896 (2007).

62. Vizentin-Bugoni, J. et al. Influences of sampling effort on detected
patterns and structuring processes of a Neotropical plant-
hummingbird network. J. Anim. Ecol. 85, 262–272 (2016).

63. Dormann, C. F., Frund, J., Bluthgen, N. & Gruber, B. Indices, graphs
and null models: analyzing bipartite ecological networks. Open
Ecol. J. 2, 7–24 (2009).

64. Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat.
Methodol. 65, 95–114 (2003).

65. Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-
based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).

Article https://doi.org/10.1038/s41467-022-34355-w

Nature Communications |         (2022) 13:6943 11

https://arxiv.org/abs/1403.2575
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
http://CRAN.R-project.org/package=vegan
https://www.google.com/earth/
https://CRAN.R-project.org/package=betalink


66. Cirtwill, A. R., Stouffer, D. B. & Romanuk, T. N. Latitudinal gradients
in biotic niche breadth vary across ecosystem types. Proc. R. Soc. B
Biol. Sci. 282, 20151589 (2015).

67. Vollstädt, M. G. R. et al. Seed-dispersal networks respond differ-
ently to resource effects in open and forest habitats. Oikos 127,
847–854 (2017).

68. Fründ, J. Dissimilarity of species interaction networks: how to par-
tition rewiring and species turnover components. Ecosphere 12,
e03653 (2021).

69. Wood S. N. & Scheipl, F. gamm4: generalized additive mixed
models using “mgcv” and ‘lme4’. R package version 0.2-6. https://
cran.r-project.org/package=gamm4 (2020).

70. Martins, L. P. et al. Data and code: Global and regional ecological
boundaries explain abrupt spatial discontinuities in avian frugivory
interactions. Dryad Digital Repository, https://doi.org/10.5061/
dryad.mcvdnck4d (2022).

71. Venter, O et al. Data from: Global terrestrial Human Footprint maps
for 1993 and 2009. Dryad Digital Repository, https://doi.org/10.
5061/dryad.052q5 (2016).

72. Boyle, B. et al. The taxonomic name resolution service: an online
tool for automated standardization of plant names. BMC Bioinform.
14, 16 (2013).

Acknowledgements
We thank all the researchers in Tylianakis and Stouffer lab groups for
their insightful comments on this manuscript. The authors acknowledge
the following funding: University of Canterbury Doctoral Scholarship
(L.P.M.); The Marsden Fund grant UOC1705 (J.M.T., L.P.M.); The São
Paulo Research Foundation - FAPESP 2014/01986-0 (M.G., C.E.), 2015/
15172-7 and 2016/18355-8 (C.E.), 2004/00810-3 and 2008/10154-7
(C.I.D., M.G., M.A.P.); Earthwatch Institute and Conservation Interna-
tional for financial support (C.I.D., M.G., M.A.P.); Carlos Chagas Filho
Foundation for Supporting Research in the Rio de Janeiro State – FAPERJ
grant E-26/200.610/2022 (C.E.); Brazilian Research Council grants
540481/01-7 and 304742/2019-8 (M.A.P.) and 300970/2015-3 (M.G.);
Rufford Small Grants for Nature Conservation No. 22426–1 (J.C.M., I.M.),
No. 9163-1 (G.B.J.) and No. 11042-1 (MCM); Universidade Estadual de
Santa Cruz (Propp-UESC; No. 00220.1100.1644/10-2018) (J.C.M., I.M.);
FundaçãodeAmparo à Pesquisa do EstadodaBahia - FAPESB (No. 0525/
2016) (J.C.M., I.M.); European Research Council under the European
Union’s Horizon 2020 research and innovation program (grant 787638)
and The Swiss National Science Foundation (grant 173342), both awar-
ded to C. Graham (D.M.D.); ARC SRIEAS grant SR200100005 Securing
Antarctica’s Environmental Future (D.M.D.); GermanScience Foundation
—Deutsche Forschungsgemeinschaft PAK 825/1 and FOR 2730 (K.B.G.,
E.L.N., M.Q., V.S., M.S.), FOR 1246 (K.B.G., M.S., M.G.R.V.) and HE2041/
20-1 (F.S., M.S.); Portuguese Foundation for Science and Technology -
FCT/MCTES contract CEECIND/00135/2017 and grant UID/BIA/04004/
2020 (S.T.) and contract CEECIND/02064/2017 (L.P.S.); National

Scientific and Technical Research Council, PIP 592 (P.G.B.); Instituto
Venezolano de Investigaciones Científicas - Project 898 (V.S.D.).

Author contributions
Conceptualization: L.P.M. and J.M.T.; Methodology: L.P.M., J.M.T., and
D.B.S.; Collection of data: P.G.B., K.B.G., G.B.J., M.C., J.M.C., D.M.D.,
C.I.D., C.E., M.G., R.H., P.J., I.M., J.C.M., M.C.M., E.L.N., M.A.P., M.Q.,
R.A.R., F.S., V.S., V.S.D., M.S., L.P.S., F.R.S., S.T., A.T., M.G.R.V.;Writing of
original draft: L.P.M. and J.M.T. All authors contributed to the final ver-
sion of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-34355-w.

Correspondence and requests for materials should be addressed to
Lucas P. Martins or Jason M. Tylianakis.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to the peer review of this work.
Peer review reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Lucas P. Martins 1 , Daniel B. Stouffer 1, Pedro G. Blendinger 2,3, Katrin Böhning-Gaese4,5, Galo Buitrón-Jurado 6,7,
Marta Correia 8, José Miguel Costa8, D. Matthias Dehling9,10, Camila I. Donatti 11,12, Carine Emer 13,14, Mauro Galetti14,
Ruben Heleno8, Pedro Jordano 15,16, Ícaro Menezes17, José Carlos Morante-Filho 17, Marcia C. Muñoz18,
Eike Lena Neuschulz4, Marco Aurélio Pizo14, Marta Quitián 19,20, Roman A. Ruggera21, Francisco Saavedra22,
Vinicio Santillán 23, Virginia Sanz D’Angelo6, Matthias Schleuning 4, Luís Pascoal da Silva 24,25,
Fernanda Ribeiro da Silva26, Sérgio Timóteo 8, Anna Traveset20, Maximilian G. R. Vollstädt27 & Jason M. Tylianakis 1

1Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Private bag 4800, Christchurch 8140, Aotearoa New Zealand.
2Instituto de Ecología Regional, Universidad Nacional de Tucumán and CONICET; CC 34, 4107 Tucumán, Argentina. 3Facultad de Ciencias Naturales e
Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 2005, 4000 Tucumán, Argentina. 4Senckenberg Biodiversity and Climate Research
Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt amMain, Germany. 5Institute for Ecology, Evolution andDiversity, Goethe University Frankfurt,Max-

Article https://doi.org/10.1038/s41467-022-34355-w

Nature Communications |         (2022) 13:6943 12

https://cran.r-project.org/package=gamm4
https://cran.r-project.org/package=gamm4
https://doi.org/10.5061/dryad.mcvdnck4d
https://doi.org/10.5061/dryad.mcvdnck4d
https://doi.org/10.5061/dryad.052q5
https://doi.org/10.5061/dryad.052q5
https://doi.org/10.1038/s41467-022-34355-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-3249-1070
http://orcid.org/0000-0003-3249-1070
http://orcid.org/0000-0003-3249-1070
http://orcid.org/0000-0003-3249-1070
http://orcid.org/0000-0003-3249-1070
http://orcid.org/0000-0001-9436-9674
http://orcid.org/0000-0001-9436-9674
http://orcid.org/0000-0001-9436-9674
http://orcid.org/0000-0001-9436-9674
http://orcid.org/0000-0001-9436-9674
http://orcid.org/0000-0002-2130-9934
http://orcid.org/0000-0002-2130-9934
http://orcid.org/0000-0002-2130-9934
http://orcid.org/0000-0002-2130-9934
http://orcid.org/0000-0002-2130-9934
http://orcid.org/0000-0003-2293-0092
http://orcid.org/0000-0003-2293-0092
http://orcid.org/0000-0003-2293-0092
http://orcid.org/0000-0003-2293-0092
http://orcid.org/0000-0003-2293-0092
http://orcid.org/0000-0003-0475-8962
http://orcid.org/0000-0003-0475-8962
http://orcid.org/0000-0003-0475-8962
http://orcid.org/0000-0003-0475-8962
http://orcid.org/0000-0003-0475-8962
http://orcid.org/0000-0003-4303-5863
http://orcid.org/0000-0003-4303-5863
http://orcid.org/0000-0003-4303-5863
http://orcid.org/0000-0003-4303-5863
http://orcid.org/0000-0003-4303-5863
http://orcid.org/0000-0002-1258-2816
http://orcid.org/0000-0002-1258-2816
http://orcid.org/0000-0002-1258-2816
http://orcid.org/0000-0002-1258-2816
http://orcid.org/0000-0002-1258-2816
http://orcid.org/0000-0003-2142-9116
http://orcid.org/0000-0003-2142-9116
http://orcid.org/0000-0003-2142-9116
http://orcid.org/0000-0003-2142-9116
http://orcid.org/0000-0003-2142-9116
http://orcid.org/0000-0002-1625-9872
http://orcid.org/0000-0002-1625-9872
http://orcid.org/0000-0002-1625-9872
http://orcid.org/0000-0002-1625-9872
http://orcid.org/0000-0002-1625-9872
http://orcid.org/0000-0003-4413-4804
http://orcid.org/0000-0003-4413-4804
http://orcid.org/0000-0003-4413-4804
http://orcid.org/0000-0003-4413-4804
http://orcid.org/0000-0003-4413-4804
http://orcid.org/0000-0002-4296-580X
http://orcid.org/0000-0002-4296-580X
http://orcid.org/0000-0002-4296-580X
http://orcid.org/0000-0002-4296-580X
http://orcid.org/0000-0002-4296-580X
http://orcid.org/0000-0001-9426-045X
http://orcid.org/0000-0001-9426-045X
http://orcid.org/0000-0001-9426-045X
http://orcid.org/0000-0001-9426-045X
http://orcid.org/0000-0001-9426-045X
http://orcid.org/0000-0003-2358-1277
http://orcid.org/0000-0003-2358-1277
http://orcid.org/0000-0003-2358-1277
http://orcid.org/0000-0003-2358-1277
http://orcid.org/0000-0003-2358-1277
http://orcid.org/0000-0003-2417-3259
http://orcid.org/0000-0003-2417-3259
http://orcid.org/0000-0003-2417-3259
http://orcid.org/0000-0003-2417-3259
http://orcid.org/0000-0003-2417-3259
http://orcid.org/0000-0001-7402-5620
http://orcid.org/0000-0001-7402-5620
http://orcid.org/0000-0001-7402-5620
http://orcid.org/0000-0001-7402-5620
http://orcid.org/0000-0001-7402-5620


von-Laue-Straße 13, Frankfurt am Main 60439, Germany. 6Laboratorio de Biología de Organismos, Centro de Ecología, Instituto Venezolano de Investiga-
ciones Científicas (IVIC), Carretera Panamericana, km 11, Altos de Pipe, Edo, Miranda, Venezuela. 7Universidad Estatal Amazónica-Sede Zamora Chinchipe;
Calle Luis Imaicela entreAzuay yReneUlloa, El Pangui, ZamoraChinchipe, Ecuador. 8Centre for Functional Ecology,Associate Laboratory TERRA,Department of
Life Sciences, University of Coimbra, CalçadaMartim de Freitas, 3000-456Coimbra, Portugal. 9Swiss Federal Research InstituteWSL, Zürcherstrasse 111, 8903
Birmensdorf, Switzerland. 10SecuringAntarctica’s Environmental Future, School of Biological Sciences,MonashUniversity,Melbourne, Victoria 3800, Australia.
11Conservation International, 2011 Crystal Dr. Suite 600, Arlington, VA 22202, USA. 12Department of Biological Sciences, Northern Arizona University, 617S.
Beaver St., Flagstaff, AZ 86011-5640, USA. 13Rio de Janeiro Botanical Garden Research Institute, Rua Pacheco Leão 915, Jardim Botânico, Rio de Janeiro, RJ CEP
22460-030, Brazil. 14Department of Biodiversity, São Paulo State University – UNESP, Rio Claro, SP, Brazil. 15Estación Biológica de Doñana, CSIC, av. Americo
Vespucio 26, 41092 Sevilla, Spain. 16Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain. 17Applied Conservation Ecology Lab,
SantaCruzStateUniversity, Rodovia Ilhéus- Itabuna, km 16, Salobrinho, Ilhéus, Bahia 45662-000, Brazil. 18ProgramadeBiología,UniversidaddeLaSalle, Carrera
2 # 10-70Bogotá, Colombia. 19Systematic Zoology Laboratory, TokyoMetropolitan University, 1-1Minami-Osawa,Hachioji-shi, Tokyo 192-0397, Japan. 20Instituto
Mediterráneo de Estudios Avanzados (CSIC-UIB), Miquel Marqués 21, Mallorca, Balearic Islands, 07190 Esporles, Spain. 21Instituto de Ecorregiones Andinas
(Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad Nacional de Jujuy), Canónigo Gorriti 237, Y4600 San Salvador de Jujuy,
Jujuy, Argentina. 22Instituto de Ecología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz, Bolivia. 23Centro de Investigación,
Innovación y Transferencia de Tecnología (CIITT), Unidad Académica de Posgrado, Universidad Católica de Cuenca, Av. de las Américas, Cuenca, Ecuador.
24CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661
Vairão, Portugal. 25BIOPOLISProgram inGenomics, Biodiversity andLandPlanning,CIBIO,CampusdeVairão, 4485-661Vairão, Portugal. 26Laboratory ofHuman
Ecology andEthnobotany,Department of EcologyandZoology, Federal University of SantaCatarina,UFSC,CampusTrindade, s/n, Florianópolis, SC88010-970,
Brazil. 27Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Oester Voldgade 5-7, 1350 Copenhagen K, Denmark.

e-mail: martinslucas.p@gmail.com; jason.tylianakis@canterbury.ac.nz

Article https://doi.org/10.1038/s41467-022-34355-w

Nature Communications |         (2022) 13:6943 13

mailto:martinslucas.p@gmail.com
mailto:jason.tylianakis@canterbury.ac.nz


 

 

1 

 

 
Supplementary Information  

 

Global and regional ecological boundaries explain abrupt spatial discontinuities in 

avian frugivory interactions 

 
Lucas P. Martins*, Daniel B. Stouffer, Pedro G. Blendinger, Katrin Böhning-Gaese, Galo 

Buitrón-Jurado, Marta Correia, José Miguel Costa, D. Matthias Dehling, Camila I. Donatti, 

Carine Emer, Mauro Galetti, Ruben Heleno, Pedro Jordano, Ícaro Menezes, José Carlos 

Morante-Filho, Marcia C. Muñoz, Eike Lena Neuschulz, Marco Aurélio Pizo, Marta Quitián, 

Roman A. Ruggera, Francisco Saavedra, Vinicio Santillán, Virginia Sanz D’Angelo, Matthias 

Schleuning, Luís Pascoal da Silva, Fernanda Ribeiro da Silva, Sérgio Timóteo, Anna Traveset, 

Maximilian G. R. Vollstädt, Jason M. Tylianakis* 

 

*Corresponding authors. Email: martinslucas.p@gmail.com (L.P.M); jason.tylianakis@canterbury.ac.nz (J.M.T)  

mailto:martinslucas.p@gmail.com


 

 

2 

 

Supplementary Methods 

 

Standardizing the taxonomy 

 

Considering the variety of authors and studies in our dataset, which identified plants and birds 

with differing resolution, it was necessary to reduce the taxonomic uncertainty in a uniform way. 

For this, we extracted the frugivore and plant species lists from all networks and performed a 

series of filters in order to remove non-existent species names (e.g., morphospecies labels) and 

standardize synonymous names according to reference databases. 

 

Frugivore species  

 

To account for spelling errors, we checked the matching of frugivore species names in our 

database to those from several taxonomic sources using the Global Names Resolver (GNR)1. We 

accessed this database using the function gnr_resolve from the R package taxize2 

(Supplementary Fig. 3; step 1). This function provides a matching score and the name from any 

of GNR’s sources that most closely matches each name in our species list. Matching is 

determined by a combination of checking for exact matches against the names in the data sources 

and fuzzy matching (of canonical forms or parts of the names) using the TaxaMatch algorithm3. 

Because we were only interested in birds, we used the function classification from the same 

package to retrieve the taxonomic hierarchy and remove non-avian species, using the National 

Center for Biotechnology Information (NCBI)4 as the reference database (Supplementary Fig. 3; 

step 2). For those species classified as birds, we used the function gnr_resolve one more time 

using BirdLife International5 as the reference database (Supplementary Fig. 3; step 3). We used 

data from the Integrated Taxonomic Information System (ITIS)6 and the synonyms function from 

the taxize package2 to obtain the synonyms of the species cross-checked with BirdLife 

International, as well as of those that were not found in the BirdLife database but were 

previously classified as birds (Supplementary Fig. 3; step 4). We did this because, while obsolete 

bird species names usually did not have a match in BirdLife, one of its synonyms could: e.g., the 

black-fronted piping-guan was not found in the BirdLife database when its former scientific 

name, Penelope jacutinga, was entered; however, its currently accepted scientific name, Pipile 

jacutinga, was found as being one of the synonyms of Penelope jacutinga, and this synonym was 

revealed during step 4.  

We also downloaded the Handbook of the Birds of the World (HBW) and BirdLife 

International (version 4.0)7 and automatically checked for matches of species names in our 

frugivore list with the names from the columns ‘scientific name’ and ‘synonym’ of the HBW-

BirdLife spreadsheet (Supplementary Fig. 3; step 5). By doing this, we were able to retrieve all 

the scientific names associated with the matched name in HBW-Birdlife. We used a fuzzy 

matching algorithm based on the Levenshtein distance between two strings to search for other 

possible names on the HBW-BirdLife spreadsheet for the species without good matches in any of 

the GNR’s sources or BirdLife International, as well as for those species that were not found in 

the ITIS database (Supplementary Fig. 3; step 6). On some occasions, even this fuzzy matching 

algorithm could not find matches for a species name, which usually occurred when the genus 

name was incorrect or obsolete (note that in the vast majority of cases obsolete scientific names 

were fixed during steps 4 and 5, but some obsolete names were not present in either the ITIS or 

HBW-BirdLife databases). For those species, we automatically searched for their epithet names 
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in the columns ‘scientific name’ and ‘synonym’ of HBW-BirdLife and retrieved only those that 

had one single match in each column (Supplementary Fig. 3; step 7). The reason for restraining 

our search for those with one single match is because some epithet names are common and do 

not necessarily represent the same species. However, even this restriction is not a guarantee that 

the species with a given epithet in our list is the same species with the epithet in HBW-Birdlife, 

since a misspelled epithet name may coincidentally match the epithet of other species. Thus, we 

checked manually the taxonomy of all species corrected using this method (N = 17 species). We 

did this by searching for both the original species name (before the data cleaning process) and 

the matched name in the Avibase8 and BirdLife5 databases. By applying this series of filters, we 

were able to correct and validate the names and synonyms of 1,019 bird species. For the 

remaining species, we checked the taxonomy manually by inspecting the same databases as in 

the previous step.  

Finally, we generated a list object in R9 in which element names correspond to scientific 

names accepted by either BirdLife International - obtained using the gnr_resolve function from 

the taxize package2 in 28/07/2020 - or HBW-BirdLife7, while strings within elements correspond 

to all their synonyms and original species names. We used this list to standardize the taxonomy 

of the bird species in our local networks, so that synonyms would not be treated as different 

species (i.e., if two species were synonyms, they were attributed the same name in the local 

networks). All species that were removed during the cleaning process (non-bird species and 

those without genus and/or species names, such as Undefined sp. and Turdus sp.) were removed 

from our local networks and further analyses (N = 82 species). Around 86% of frugivore species 

remained per network after the data cleaning. Supplementary Figure 3 shows a summary of the 

steps of the frugivore data cleaning.  

 

Plant species  

 

We checked the matching of plant species names with several taxonomic sources from the 

Global Names Resolver (GNR)1 using the function gnr_resolve from the taxize package2 

(Supplementary Fig. 4; step 1), as with birds above. For those species without matches in any of 

GNR’s sources, we applied a fuzzy matching algorithm based on the Levenshtein distance 

between two strings to compare these species’ names with the matched names from GNR 

(Supplementary Fig. 4; step 2). We did this because some of the species’ names without matches 

in our step 1 were misspelled names of plant species already included in our dataset but not 

found by the gnr_resolve function. After this process, we relied on the gnr_resolve function one 

more time to compare the list of matched names from GNR with the list from the International 

Plant Names Index (IPNI)10 (Supplementary Fig. 4; step 3). The reason for using gnr_resolve 

twice is because we first wanted to make sure that the species had a match with at least one of 

the taxonomic sources from GNR (i.e., confirm that it is a scientific name) and then check 

whether the matched name represents a scientific name accepted by IPNI. By doing this, we 

were able to evaluate which species had high matching scores during our first step but not during 

the third, indicating that they are not internationally accepted scientific names. 

 We used data from the Tropicos database11 to obtain the synonyms of the plant species 

that had been cross-checked with IPNI. We also relied on the iPlant Taxonomic Name 

Resolution Service12 to complement the synonyms list and retrieve the most recent accepted 

names of the species (Supplementary Fig. 4; step 4). Using this series of filters, we were able to 

correct and validate the names and synonyms of 1,562 plant species. Finally, we generated a list 
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object in R9 in which element names correspond to accepted scientific names of species (cross-

checked with the IPNI database on 15/09/2020) and strings within elements correspond to all 

their synonyms and original species names (before the data cleaning process). We used this list 

to standardize the taxonomy of the plant species in our local networks, as we did for birds.  

Because our plant list contained several cases in which two (or more) accepted species 

shared a synonym within their elements (N = 121), we had to deal with the standardization of 

these names. We did this by attributing the same name for all the occurrences of the species 

sharing a synonym only if the shared name was already present in our dataset. For example, 

Cecropia digitata is one of the synonyms of C. angustifolia, C. obtusifolia and C. pachystachya 

(and is therefore within the elements of these three species), but C. digitata was not present in 

any of the networks in our dataset, such that we could maintain the names C. angustifolia, C. 

obtusifolia and C. pachystachya in our local networks. We did this because shared synonyms that 

were not present in our dataset usually represented obsolete species that are no longer accepted. 

Alternatively, for the cases in which the shared synonym was present in our dataset (N = 37), we 

attributed the same name in the local networks for all the species that shared that given name. 

We adopted this conservative approach because, in this case, shared synonyms were usually 

species that were described multiple times by different authors, or species with several 

subspecies and varieties (note, however, that authors rarely include this level of taxonomic 

information on networks). Therefore, the shared name could potentially be any of the species that 

possess it as one of its synonyms.  

Considering the high number of species (N = 184) with a valid genus name but without a 

valid epithet name (as indicated by the absence of matches in our steps 1 and 3, or by the low 

matching scores to any of the GNR’s sources), as well as unresolved species names without good 

matches in the IPNI database (hereafter, problematic species) in our plant species list, we added 

two steps to evaluate whether such problematic species could be considered as a separate species 

from the other species in our dataset. For example, a species without an epithet (e.g., labelled in a 

study as ‘Miconia sp.’) could still be treated as a distinct species in the analysis, provided we 

could be certain that it was not the same as another congeneric (Miconia) species, with or 

without epithet, in our dataset. Similarly, an unresolved species name that is not internationally 

accepted could only be considered as a distinct species in our analysis if we could disentangle it 

from its congeneric species in the dataset. Importantly, we did not perform these additional steps 

for birds because there were very few cases of birds with valid genus but invalid epithet names. 

To determine whether problematic species could be treated as a distinct species for 

analysis, we evaluated whether the distribution of any of the congeners of problematic species in 

our dataset overlapped with the location of the problematic species, such that we cannot be 

confident that the problematic species is not simply another occurrence of one or more of its 

congeners already in the dataset. For this process, we used the coordinates of the networks in 

which each problematic species occurred and generated buffer zones (diameter = 500 km) 

around these network locations. Considering that the size of the buffer zones could potentially 

affect our results, we also conducted the analysis using buffer zone sizes of 100 km and 1000 km 

(note, however, that our results still hold independently of the buffer zone size used; see 

Supplementary Tables 9-32). We collected occurrence data for all other species in the same 

genus in our dataset to evaluate whether the occurrence points of any of these congeneric species 

overlapped with the buffer zone of the problematic species (Supplementary Fig. 4; step 5). For 

collecting occurrence points, we used data from the Global Biodiversity Information Facility 

(GBIF)13 and applied a series of filters (for details, see the Occurrence data section below). If the 
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occurrence points of at least one of the congeneric species overlapped with the buffer zone of a 

given problematic species, we assumed that this problematic species could not be considered, 

with confidence, as a unique species in our dataset. Conversely, if none of the occurrence points 

of congeneric species overlapped with the buffer zone of the problematic species, we treated this 

problematic species as a separate species (Supplementary Fig. 5), provided that there were no 

other problematic species (without valid epithets) in the same genus from other studies in the 

dataset. 

Alternatively, if a genus contained more than one problematic species in the same study 

(e.g., Miconia sp.1, Miconia sp.2), we assumed that the authors distinguished the congeners 

within the study. For the cases in which a problematic species occurred in a single study and was 

the only species belonging to that genus in our dataset, the original name of the species was 

maintained in the local network. However, if there were problematic species from the same 

genus in different studies, we needed to ascertain whether they could potentially be the same 

species. Our approach for dealing with this issue was to determine all the possible species that a 

problematic species could be in each location, and then compare the lists of possible species in 

each location to identify any overlap. To do this, we first generated buffer zones (as in step 5) for 

each network location in which these problematic species occurred and obtained occurrence data 

from GBIF for all known species belonging to that genus (see the Occurrence data section). We 

then checked whether there were congeneric species with occurrence points within the buffer 

zones of two (or more) problematic species belonging to the same genus (Supplementary Fig. 4; 

step 6). If yes, we could not consider that these problematic species were different from each 

other. Rather, in this case there was a chance that the problematic species were the same species 

whose occurrence points overlapped the buffer zones of both network locations (Supplementary 

Fig. 6). On the other hand, if there were no species whose distribution overlapped the buffer 

zones of both network locations, these problematic species could be considered as being distinct 

species in the dataset.  

All species that were removed during the data cleaning process (i.e., the problematic 

species without a valid genus name, such as Rubiaceae sp. or Undefined sp.) were also removed 

from our local networks and further analyses (N = 166 species). Problematic species that could 

not be disentangled from resolved species or other problematic species in the dataset were named 

according to three distinct scenarios (for details, see the Alternative scenarios section). Around 

89% percent of plant species remained per network after the data cleaning (note, however, that 

this percentage varies slightly depending on the scenario employed). Supplementary Figure 4 

shows a summary of the steps of the plant data cleaning. 

 

Occurrence data 

 

We retrieved occurrence data from the Global Biodiversity Information Facility (GBIF)13 using 

the function occ_search from the R package rgbif14. For each species, we only requested 

occurrence data for observations for which coordinate points were available and no geospatial 

issues were detected, as determined by GBIF’s record interpretation. We also followed a 

previous study15 and removed occurrence points with: (i) a coordinate uncertainty larger than 

100 km (the size of our smallest buffer zone); (ii) those for which the collection date was before 

1945, as older occurrence points are usually not properly geo-referenced16; (iii) those in which 

the number of counts associated with the occurrence point was zero; and (iv) those in which the 

‘basis of record’ was not an observation or a preserved specimen.  
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In addition, we used the function clean_coordinates from the R package 

CoordinateCleaner17 and land mass and country data (with a 1:10m scale) from Natural Earth18 

to remove occurrence points for which the coordinates: (v) fell within the ocean or outside the 

borders of the country where they were recorded, both of which indicate data-entry errors, (vi) 

were located around the country capital or the centroid of the country, indicating imprecise geo-

referencing based on inadequate sampling site descriptions, (vii) both latitude and longitude were 

zero or had equal values, indicating failed geo-referencing, and (viii) were located around a 

biodiversity institution, suggesting that records might represent specimens that were erroneously 

geo-referenced to museums, herbaria or universities instead of their sampling localities17. After 

applying this series of filters, 456,582 occurrence points were retrieved for 610 plant species in 

our dataset. These occurrence points were used for disentangling ‘problematic’ species during 

step 5 of the plant species cleaning process (Supplementary Fig. 5).  

Because the next step required us to retrieve occurrence data for all known species 

belonging to a given genus, we used the function name_lookup from the R package rgbif14 to 

search for all accepted species names associated with the genus name. We used the same set of 

filters previously described to obtain the occurrence points for each species during the step 6 of 

the plant species cleaning process (Supplementary Fig. 6). In the end, 994,270 occurrence points 

were retrieved for 4,793 plant species. 

 

Alternative scenarios 

 

We used three distinct scenarios for attributing names for problematic plant species that could 

not be considered as unique species in our dataset. In the first scenario, we removed from the 

local network any problematic species whose buffer zone was overlapped by the distribution of 

‘resolved’ congeneric species in the dataset (step 5 of the plant species cleaning process). For 

example, if the buffer zone of the problematic species ‘Miconia sp.’ was overlapped by other 

resolved Miconia species in the dataset, we removed the species Miconia sp. (and all of its 

interactions) from its local network. We adopted this strategy rather than considering that the 

problematic species and the resolved species that overlap its buffer zone are the same because 

such problematic species could potentially be any of the resolved species that overlap its buffer 

zone. This, in turn, made it impractical to attribute the name of the resolved species to the 

problematic species in cases where the buffer zone of the problematic species was overlapped by 

several resolved species. In addition, our first scenario considers all problematic species that 

could not be disentangled from each other (step 6 of the plant species cleaning process) as being 

the same species. For example, if two problematic species labelled as ‘Coussapoa sp.’ in two 

separate local networks could not be disentangled because there are congeneric species 

simultaneously overlapping the buffer zones of both network locations (Supplementary Fig. 6), 

we attributed the same name to these two problematic species. 

Alternatively, our second scenario treats problematic species as being unique. Therefore, 

a unique name was given for the problematic species whose buffer zone was overlapped by 

‘resolved’ congeneric species in the dataset. For instance, the problematic species ‘Miconia sp.’ 

from the example above would receive a unique name in the second scenario instead of being 

removed from its local network. In this scenario, we also attributed unique names for 

problematic species that could not be disentangled from each other. For example, each of the two 

problematic Coussapoa species mentioned above would receive a unique name instead of 

sharing the same name. 
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Finally, the third scenario removes from the local networks all plant species that could 

not be considered as being unique species in the dataset and is therefore our most conservative 

scenario (which was used for obtaining the results presented in the main text). Because these 

three different scenarios could affect our response variables, we repeated the analyses using the 

sets of networks from all scenarios. Notably, results remained qualitatively the same 

independently of the scenario used in the analyses (Supplementary Tables 9-32).  

 

 

Sensitivity analysis  

 

Considering that the threshold of minimum network size used for analyses is arbitrary and has 

the potential to affect the reported patterns, we performed a sensitivity analysis to evaluate how 

sequentially removing local networks based on their size would affect the estimates (t and F 

values) and significance (obtained using a combination of Generalized Additive Models and 

Multiple Regression on distance Matrices) of our predictor variables. We did this by sequentially 

removing all networks below a specified threshold of size (i.e., class of network size) in our 

dataset, from smallest to largest (Supplementary Fig. 22). Note, however, that although we had 

60 different classes of network sizes (minimum network size = 8 species; maximum network size 

= 238 species), we were only able to perform the analysis up to the removal of networks with 71 

(or fewer) species (which represented 183 out of the 196 local networks in our dataset). We 

could not remove the local networks with larger sizes (N = 13 networks) because removing any 

of these remaining networks would lead to our Generalized Additive Models (GAMs) having 

more coefficients than data. 

We found that removing small networks from our dataset did not strongly affect our 

results; for instance, removing networks with up to 10 species (which represent 17 out of 196 

local networks in our dataset) would not affect any of the reported patterns (Supplementary Figs. 

23 and 24). We also highlight that even though all estimates tend to approach zero with the 

removal of larger networks, this is partially because beyond a certain number of network 

removals there are too few data points and insufficient range of the predictor value for the model 

to be able to detect an effect.  

Importantly, of the significant effects in the full model using interaction dissimilarity as 

response, only biome boundaries seem to be sensitive to the sequential removal of small 

networks from the dataset (Supplementary Fig. 23). However, biome boundaries explained a 

relatively low unique proportion of the variation in interaction dissimilarity in our full model. In 

fact, most of the deviance explained by biomes was shared with ecoregions (Supplementary Fig. 

12), which is likely because biomes share boundaries with ecoregions and the latter explain 

finer-resolution environmental differences19. This strong effect of ecoregion borders on 

interaction dissimilarity is corroborated in our sensitivity analysis: the effect of ecoregions 

remained significant even after the removal of networks with up to 57 species (which represented 

around 88% of the local networks in our dataset; Supplementary Fig. 22). 

In addition, the two significant effects in our full model using network dissimilarity as 

response variable were very robust to the removal of small networks from the dataset 

(Supplementary Fig. 24). More specifically, the effect of spatial distance remained significant 

even after the removal of networks with up to 22 species (which represented around 50% of our 

local networks), while the effect of sampling intensity was still significant after the removal of 

networks with up to 32 species (~ 68% of the local networks in the dataset).  
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Supplementary Fig 1. Maps of ecoregions and biomes of the world. a Terrestrial ecoregions, 

with stronger color tones indicating the 67 ecoregions (out of 846) represented in our dataset. b 

Global biomes, with stronger color tones indicating the 11 biomes (out of 14) represented in our 

dataset. Ecoregions and biomes were defined based on the map developed by Dinerstein et al.19 

(available at https://ecoregions.appspot.com/ under a CC-BY 4.0 license).  

https://ecoregions.appspot.com/
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Supplementary Fig. 2. Geographic distribution of the 196 avian frugivory networks in our 

dataset. Local networks were distributed across 11 biomes, with most of these being located 

within a single biome, the Tropical & Subtropical Moist Broadleaf Forests, which covers around 

11% of the world’s ice-free land surface. Biomes were defined based on the map developed by 

Dinerstein et al.19 (available at https://ecoregions.appspot.com/ under a CC-BY 4.0 license).  

https://ecoregions.appspot.com/
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Supplementary Fig. 3. An overview of the steps for cleaning and standardizing the 

frugivore species data. Red boxes represent species that were removed from the analyses (non-

avian species and species without epithet or genus names). The dashed box comprises the steps 

performed for the species without good matches in any of the Global Names Resolver (GNR) 

sources and in the BirdLife International database, or that were not found in the Integrated 

Taxonomic Information System (ITIS). The final list comprises elements whose names represent 

scientific names accepted either by the BirdLife International or by the Handbook of the Birds of 

the World and BirdLife International, and strings within elements comprise their synonymous 

and original names (before the cleaning process). For example, Pipile jacutinga (Cracidae) is the 

current accepted name of the black-fronted piping-guan, while its synonymous names include 

Penelope jacutinga and Aburria jacutinga (green box). All names (strings of synonyms) within 

elements (accepted names) were replaced by the element name in the local networks, such that a 

given species had the same name for all its occurrences in the entire database. Numbers inside 

boxes correspond to the steps of the frugivore data cleaning process. Silhouettes were obtained 

from http://phylopic.org under a Public Domain license.   

http://phylopic.org/
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Supplementary Fig. 4. Overview of the steps for cleaning and standardizing the plant 

species data. The red box represents species that were removed from the analyses (species 

without valid genus names). The dashed box comprises the steps performed for the species 

without good matches in any of the Global Names Resolver (GNR) sources and in the 

International Plant Names Index (IPNI) database (i.e., ‘problematic species’). We performed two 

steps to determine if problematic species could be considered as being unique species in our 

dataset (see steps 5 and 6 of the plant species data cleaning process described in the text and 

visualized in Supplementary Figs. 5 and 6). The final list comprises elements whose names 

represent scientific names cross-checked with the IPNI database and strings within elements 

comprise their synonymous and original names (before the cleaning process), or elements whose 

names represent new names given for problematic species that can be considered as unique 

species in our dataset, and the strings within elements comprise their original name. For example 

(yellow box), Ardisia sieboldii (Primulaceae) is a scientific name accepted by IPNI, while A. 

formosana, Bladhia sieboldii and Tinus sieboldii represent some of its synonymous names. 

Meanwhile, Ardisia_GBIFresolved_net_184 is the new name given for the problematic (but 

unique) species Ardisia sp., as revealed by the step 5 of the plant species data cleaning process. 

Note that, in the former case, all names (strings) within elements were replaced by the element 

name in the local networks, while in the latter case strings within elements were replaced by the 

element name only in the network where the problematic species was observed (in this example, 

network 184). Numbers inside boxes correspond to the steps of the plant data cleaning process. 

See the Alternative scenarios section for details on how we attributed names for plant species 

that could not be considered as unique species in our dataset.  
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Supplementary Fig. 5. Graphical example (for an unresolved Beilschmiedia species) of step 

5 of the plant species cleaning process. Coloured points indicate the distribution of 

Beilschmiedia species already contained within our dataset, and these are compared with the 

occurrence location of a ‘problematic species’ (a species with genus name only). The 

distributions of both Beilschmiedia tawa (green dots) and Beilschmiedia tovarensis (blue dots) 

do not overlap with the buffer zone of the problematic species Beilschmiedia sp., such that 

Beilschmiedia sp. can be considered as a separate species in our dataset.  
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Supplementary Fig. 6. Graphical example of step 6 of the plant species cleaning process. In 

this example, there are two occurrences of species labelled ‘Coussapoa sp.’ in separate studies 

(locations 1 and 2). The distribution of Coussapoa ovalifolia (red dots) simultaneously overlaps 

the buffer zones of two ‘problematic species’ (i.e., species with genus name only) belonging to 

the same genus, such that these problematic species could not confidently be considered as being 

separate species. A distribution map like this was created for all congeneric species with 

occurrence data in either buffer zone. Note that C. ovalifolia is present in the potential list of 

Coussapoa species in both network sites (other Coussapoa species were omitted in the species 

lists for clarity).  
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Supplementary Fig. 7. Results from Pearson’s correlation tests between sampling metrics. 

For this analysis, we used the subset of networks sampled in Aotearoa New Zealand (N = 14). 

Numbers inside circles indicate P values obtained using a two-tailed Pearson correlation test. 

Sizes of the circles and colors are proportional to the correlation coefficient.  
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Supplementary Fig. 8. Relationships between network metrics and sampling hours and 

months. We used Generalized Linear Models (with Poisson errors, fitted with quasi-likelihood 

to deal with overdispersion) to obtain significance values. Points represent the 196 local 

frugivory networks in our dataset. Solid lines represent significant relationships. 
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Supplementary Fig. 9. Scatterplots of the relationships between our predictor variables of 

interest (not those used for controlling sampling effects) and species turnover (βS). a The 

relationship between the quantitative version (environmental dissimilarity) of ecoregion distance 

and species turnover; point colors indicate whether the pair of local networks belong to the same 

(blue) or distinct (red) biomes. b The relationship between the quantitative version 

(environmental dissimilarity) of biome distance and species turnover. c The relationship between 

local human disturbance distance and species turnover. d The relationship between spatial 

distance and species turnover. Note that, contrary to species interactions (Fig. 6 in the main text 

and Supplementary Fig. 14c), several networks still shared species beyond the threshold distance 

of 2,500 km (dotted red line). e The relationship between elevation difference and species 

turnover.  
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Supplementary Fig. 10. Venn diagram showing the relative contributions (%) of our main 

predictor variables to explaining the variation in species turnover (βS) across networks, 

calculated using deviance partitioning. Spatial distance alone explained the greatest proportion 

(12.9%) of the variation in species turnover, followed by the shared effect of spatial distance and 

ecoregion boundaries. Note that, to aid visualization, we only included our predictor variables of 

interest (i.e., not those used for controlling sampling effects). Terms that reduce explanatory 

power are not shown. 
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Supplementary Fig. 11. The effect of large-scale ecological boundaries on the proportion of 

pairs of local networks sharing interactions. Avian frugivory networks located within the 

same ecoregion/biome were more likely to share interactions than those located across distinct 

ecoregions/biomes. Note that over 50% of the pairs of networks located within the same 

ecoregion shared interactions.  
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Supplementary Fig. 12. Venn diagram showing the relative contributions (%) of our main 

predictor variables to explaining the variation in plant-frugivore interaction dissimilarity 

(βWN), calculated using deviance partitioning. The shared effect of ecoregions and spatial 

distance explained the greatest proportion (6.41%) of the variation in interaction dissimilarity, 

followed by the unique contributions of these two variables. Note that, to aid visualization, we 

only included our predictor variables of interest (i.e., not those used for controlling sampling 

effects). Terms that reduce explanatory power are not shown.  
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Supplementary Fig. 13. Partial effects plot of the relationship between human disturbance 

distance and interaction dissimilarity (βWN). The smoothed line was fitted using a Generalized 

Additive Model (GAM) with interaction dissimilarity as response variable and all of our 

predictor variables included (see Table 1 in the main text). The lighter green area represents 2 

standard errors above and below the estimate of the smooth being plotted.  
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Supplementary Fig. 14. Scatterplots of the relationships between our predictor variables of 

interest (except human disturbance distance, which is presented in the main text) and 

interaction dissimilarity (βWN). a The relationship between the quantitative version 

(environmental dissimilarity) of ecoregion distance and interaction dissimilarity; point colors 

indicate whether the pair of networks belong to the same (blue) or distinct (red) biomes. b The 

relationship between the quantitative version (environmental dissimilarity) of biome distance and 

interaction dissimilarity. c The relationship between spatial distance and interaction dissimilarity. 

Note that interaction dissimilarity increases sharply until a threshold distance of 2,500 km 

(dotted red line), beyond which few networks shared interactions (a similar pattern can be seen in 

Fig. 6 in the main text). d The relationship between elevation difference and interaction 

dissimilarity.  
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Supplementary Fig. 15. Effect of individual studies on estimates of t (for ecoregion and 

biome) and F values (for the remaining predictor variables) of Generalized Additive 

Models with interaction dissimilarity (βWN) as response variable. Points represent estimate 

values after removing one study from the data, while asterisks indicate the estimates when the 

study with the greatest number of networks (N = 35) in our dataset (study ID 76)20 is removed 

from the data. The estimates of the full model (with all studies included) are represented by the 

vertical lines. Red lines indicate a significant effect (P < 0.05), while gray lines indicate a non-

significant effect. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). The 

range of the x-axis was defined as ± 3 times the standard deviation of the estimates. Arrows 

indicate outliers beyond this range (black: when study 76 is removed; red: when other studies are 

removed).  
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Supplementary Fig. 16. Effect of individual studies on estimates of t (for ecoregion and 

biome) and F values (for the remaining predictor variables) of Generalized Additive 

Models with network structural dissimilarity as response variable. Points represent estimate 

values after removing one study from the data, while asterisks indicate the estimates when the 

study with the greatest number of networks (N = 35) in our dataset (study ID 76)20, is removed 

from the data. The estimates of the full model (with all studies included) are represented by the 

vertical lines. Red lines indicate a significant effect (P < 0.05), while gray lines indicate a non-

significant effect. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). The 

range of the x-axis was defined as ± 3 times the standard deviation of the estimates. Arrows 

indicate outliers beyond this range (black: when study 76 is removed; red: when other studies are 

removed). 
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Supplementary Fig. 17. Plant and bird species connecting local networks, ecoregions and 

biomes. World map with points representing the 196 local avian frugivory networks in our 

dataset. As in Fig. 2 in the main text, colors of shaded areas represent the 67 ecoregions where 

networks were located, with similar colors indicating ecoregions that belong to the same biome. 

Lines represent the connections (shared species) plotted along the great circle distance between 

networks. Blue lines represent connections within biomes, while red lines represent connections 

across biomes. Stronger color tones of lines indicate higher similarity of species (1-βS) between 

networks. a Lines represent connections between networks sharing bird species. Pie charts depict 

the proportion of pairs of local networks sharing bird species across vs. within ecoregions. b 

Lines represent connections between networks sharing plant species. Pie charts depict the 

proportion of pairs of local networks sharing plant species across vs. within ecoregions. c Lines 

represent connections between networks sharing both plant and bird species. Pie charts depict the 

proportion of pairs of local networks sharing both plant and bird species across vs. within 

ecoregions (see Fig. 2 for the world map of shared plant-frugivore interactions). Ecoregions and 

biomes were defined based on the map developed by Dinerstein et al.19 (available at 

https://ecoregions.appspot.com/ under a CC-BY 4.0 license). Silhouettes were obtained from 

http://phylopic.org under a Public Domain license.  

https://ecoregions.appspot.com/
http://phylopic.org/
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Supplementary Fig. 18. Percentage of long-distance network comparisons and connections 

(shared interactions) across (‘distinct’) and within (‘same’) biomes. Around 67% of the pairs 

of networks located >10,000 km of distance from each other (i.e., long-distance network 

comparisons) involved networks from distinct biomes. On the other hand, 70% of the long-

distance connections (i.e., 70% of the pairs of networks that are located > 10,000 km from each 

other and share interactions) involved networks from the same biome. 
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Supplementary Fig. 19. Correlations between the predictor variables used in our models. a 

Correlations between predictors used in our interaction rewiring analysis. b Correlations between 

predictors used in our model with interaction dissimilarity as the response variable (see Table 1 

in the main text). Sizes of the circles and colors are proportional to the correlation coefficient. 
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Supplementary Fig. 20. The number of bird and non-avian frugivore species and links (i.e., 

the frugivore fed on a plant species) in our dataset. The removal of non-avian frugivores from 

our local networks did not strongly decrease a the total number of frugivore species in our 

dataset, and b the number of links in the global network of frugivory. 
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Supplementary Fig. 21. World map with points representing the 28 local networks 

containing non-avian frugivores in our dataset. Colors of shaded areas represent the nine 

ecoregions where networks were located. Note the lack of lines representing connections (shared 

non-avian frugivore species in a and shared interactions in b, as shown for avian frugivores in 

Fig. 2 in the main text) between networks located at distinct ecoregions and biomes. Ecoregions 

and biomes were defined based on the map developed by Dinerstein et al.19 (available at 

https://ecoregions.appspot.com/ under a CC-BY 4.0 license). 

https://ecoregions.appspot.com/
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Supplementary Fig. 22. Thresholds used for sequentially removing networks in our 

sensitivity analysis. a Bars represent the 60 classes of network sizes in our dataset. Numbers 

below bars indicate the maximum size of the networks within each class. The vertical red line 

indicates the class of network size up until which analysis could be performed (i.e., after 

removing all networks up to and including this class; maximum network size = 71 species). The 

horizontal red line indicates the number of networks removed (N networks = 183) in the final 

round of our sensitivity analysis (i.e., when the maximum network size = 71). b Plot showing the 

number of size classes and network sizes in our dataset. The vertical red line indicates the size 

class up until which removal could occur and analysis could still be performed (size class rank = 

48). The horizontal red line indicates the maximum size (71 species) of networks within this 

class.   
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Supplementary Fig. 23. Sensitivity analysis showing the effect of sequentially removing 

classes of network size on estimates of t (for ecoregion and biome) and F values (for the 

remaining predictor variables) of Generalized Additive Models with interaction 

dissimilarity as the response variable. Points represent estimate values after removing all 

networks below a specified threshold of size [from smallest (bottom) to largest (top) network 

size; see Supplementary Fig. 22]. Red points indicate a significant effect (P < 0.05), while black 

points indicate a non-significant effect. P values were calculated using a combination of 

Generalized Additive Models and Multiple Regression on distance Matrices (see Methods). The 

left y-axis represents the threshold network size class below which networks were removed, 

while the right axis represents the number of networks removed at this threshold. For reference, 

horizontal black lines indicate the point where networks with up to 10 species (which represented 

17 networks) were removed from the dataset. The estimates of the full model (with all networks 

included) are represented by the vertical lines, with red lines indicating a significant effect and 

gray lines indicating a non-significant effect. The range of the x-axis was defined as ± 4 times 

the standard deviation of the estimates (to allow visualization of all estimates). Note that the 

significant effects in the full model are robust to the removal of small networks (up to 10 

species) from the dataset, even though their estimates progressively tend towards zero as larger 

networks are removed (similarly, P values tend to increase and fluctuate around the significance 

threshold as estimates approach zero). Notably, the effect that seems to be most sensitive to the 

removal of small networks (i.e., biome distance) explained a low unique proportion of the 

variation in interaction dissimilarity in our full model, as most of the deviance explained by 

biome boundaries was shared with ecoregions (Supplementary Fig. 12).  
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Supplementary Fig. 24. Sensitivity analysis showing the effect of sequentially removing 

classes of network size on estimates of t (for ecoregion and biome) and F values (for the 

remaining predictor variables) of Generalized Additive Models with network structural 

dissimilarity as response variable. Points represent estimate values after removing all networks 

below a specified threshold of size [from smallest (bottom) to largest (top) network size; see 

Supplementary Fig. 22]. Red points indicate a significant effect (P < 0.05), while black points 

indicate a non-significant effect. P values were calculated using a combination of Generalized 

Additive Models and Multiple Regression on distance Matrices (see Methods). The left y-axis 

represents the threshold network size class below which networks were removed, while the right 

axis represents the number of networks removed at this threshold. For reference, horizontal black 

lines indicate the point where networks with up to 10 species (which represented 17 networks) 

were removed from the dataset. The estimates of the full model (with all networks included) are 

represented by the vertical lines, with red lines indicating a significant effect and gray lines 

indicating a non-significant effect. The range of the x-axis was defined as ± 4 times the standard 

deviation of the estimates (to allow visualization of all estimates). Note that the significant 

effects in the full model (spatial and sampling intensity distances) are very robust to the removal 

of small networks from the dataset, even though their estimates progressively tend towards zero 

as larger networks are removed.  
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Supplementary Table 1. Description of the 196 avian frugivory networks in our dataset. 

Geographic coordinates were rounded to two decimal places. The metadata of local networks 

(e.g., original coordinates, sampling methods) are available as Supplementary Data. 

  

Network ID Latitude Longitude Location Reference 

 1* 40.33 -74.67 New Jersey, USA 21 

 2* 18.30 -66.78 Caguana, Puerto Rico 22 

 3* 18.26  -66.53 Cialitos, Puerto Rico 22 

 4* 18.17 -66.59 Cordillera, Puerto Rico 22 

 5* 18.31 -66.56 Fronton, Puerto Rico 22 

 6* -28.95 31.75 Mtunzini, South Africa 23 

 7* -22.82 -47.11 Mata Santa Genebra, São Paulo, Brazil 24 

 8* -22.82 -47.11 Mata Santa Genebra, São Paulo, Brazil 24 

 9* 18.51 -89.49 Campeche state, Mexico 25 

  10* 51.77 -1.33 Oxford, United Kingdom 26 

  11* -24.32 -48.39 Intervales, São Paulo, Brazil 27 

12 -24.13 -47.95 Carlos Botelho, São Paulo, Brazil 28 

13 -25.13 -47.96 Ilha do Cardoso, São Paulo, Brazil 29 

14 -22.55 -42.28 Poço das Antas, Rio de Janeiro, Brazil 30 

15 -23.55 -45.06 Ilha Anchieta, São Paulo, Brazil 31 

16 -20.80 -42.86 Viçosa, Minas Gerais, Brazil 32 

17 -28.22 -51.17 Estação Aracuri, Rio Grande do Sul, Brazil 33 

18 -22.94 -46.75 Itatiba, São Paulo, Brazil 34 

19 -22.48 -47.59 Rio Claro, São Paulo, Brazil 35 

20 -22.82 -47.43 Santa Barbara do Oeste, São Paulo, Brazil 36 

21 -22.67 -47.20 Cosmópolis, São Paulo, Brazil 36 

22 -22.57 -47.50 Iracemápolis, São Paulo, Brazil 36 

23 -23.55 -46.72 São Paulo, Brazil 37 

24 -22.71 -47.61 Piracicaba, São Paulo, Brazil 38 

25 -22.77 -43.69 Rio de Janeiro, Brazil 39 

26 37.79 -25.18 Azores, Portugal 40 

  27* 0.30 34.79 Kakamega Forest, Kenya 41 

28 -25.49 -49.26 Curitiba, Paraná, Brazil 42 

29 -25.44 -49.24 Curitiba, Paraná, Brazil 42 

30 -25.44 -49.22 Curitiba, Paraná, Brazil 42 

31 -25.42 -49.37 Curitiba, Paraná, Brazil 42 

32 -25.41 -49.27 Curitiba, Paraná, Brazil 42 

33 -25.36 -49.26 Curitiba, Paraná, Brazil 42 

34 -25.38 -49.32 Curitiba, Paraná, Brazil 42 

35 -25.17 -48.41 Paraná, Brazil 43 

36 28.03 -15.46 Bandama, Gran Canaria, Spain 44 

37 28.07 -15.46 El Palomar, Gran Canaria, Spain 44 

38 -12.99 -41.34 Chapada Diamantina, Bahia, Brazil 45 

39 37.18 -6.32 Hato Ratón, Sevilla, Spain 46 

40 -16.40 -67.50 Chulumani, Bolivia 47 

41 30.33 130.50 Yakushima Island, Japan 48 



 

 

33 

 

Network ID Latitude Longitude Location Reference 

42 -18.95 -48.20 Uberlândia, Minas Gerais, Brazil 49 

43 21.44 -158.08 Ēkahanui, Hawai’i, USA 50 

44 21.54 -158.19 Kahanahāiki, Hawai’i, USA 50 

45 21.38 -157.87 Moanalua, Hawai’i, USA 50 

46 21.51 -158.14 Mount Kaʻala, Hawai’i, USA 50 

47 21.54 -158.18 Pahole, Hawai’i, USA 50 

48 21.34 -157.81 Tantalus, Hawai’i, USA 50 

49 21.63 -158.04 Waimea Valley, Hawai’i, USA 50 

50 37.57 -0.91 Sierra de la Fausilla, Murcia, Spain 51 

51 26.99 92.94 Pakke Tiger Reserve, India 52 

52 7.77 -76.67 Tulenapa, Antioquia, Colombia 53 

53 43.28 -5.50 Cantabrian Range, Spain 54 

54 -29.06 -50.07 Rio Grande do Sul, Brazil 55 

55 -31.67 -53.25 Rio Grande do Sul, Brazil 55 

56 15.17 145.77 Saipan, Mariana Islands 56 

57 14.14 145.21 Rota, Mariana Islands 56 

58 -0.75 -90.32 Santa Cruz, Galapagos Islands 57 

59 52.74 23.78 Białowieża Forest, Poland 58 

60 -4.92 -73.75 Jenaro Herrera, Peru 59 

61 18.47 -67.11 Finca Montaña, Aguadilla, Puerto Rico 60 

62 19.59 -96.38 Veracruz, Mexico 61 

63 -8.97 -36.05 Coimbra Forest, Alagoas, Brazil 62 

64 -41.29 174.73 Wellington, Aotearoa New Zealand 63 

65 -41.29 174.75 Wellington, Aotearoa New Zealand 63 

66 -41.30 174.75 George Denton Park, Aotearoa New Zealand 63 

67 -41.29 174.80 Charles Plimmer Park, Aotearoa New Zealand 63 

68 -41.28 174.77 Wellington, Aotearoa New Zealand 63 

69 -42.35 173.57 Hinau Reserve, Aotearoa New Zealand 63 

70 -42.33 173.63 Mount Fyffe Reserve, Aotearoa New Zealand 63 

71 -42.28 173.74 Puhi-Puhi, Aotearoa New Zealand 63 

72 -42.24 173.78 Blue Duck Reserve, Aotearoa New Zealand 63 

73 40.22 -8.46 Choupal, Coimbra, Portugal 64 

74 -41.30 174.75 Wellington, Aotearoa New Zealand 65 

75 -12.93 -38.40 Salvador, Bahia, Brazil 66 

76 26.93 92.97 Pakke Tiger Reserve, India 67 

77 27.02 92.95 Papum Reserve Forest, India 67 

78 -43.75 169.40 Windbag Valley, Aotearoa New Zealand 68 

79 37.78 -25.15 Azores, Portugal 40 

80 37.80 -25.16 Azores, Portugal 40 

81 37.79 -25.16 Azores, Portugal 40 

82 40.31 -8.40 Coimbra, Portugal 69 

83 40.26 -8.48 Coimbra, Portugal Unpublished1 

84 -0.66 -90.32 Santa Cruz, Galapagos Islands 57 

85 -0.91 -89.43 San Cristóbal, Galapagos Islands 57 

86 -0.89 -89.49 San Cristóbal, Galapagos Islands 57 
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Network ID Latitude Longitude Location Reference 

87 -19.95 34.37 Gorongosa National Park, Mozambique 70 

88 13.70 80.19 Sriharikota Island, India 71 

89 -5.05 -37.52 Furna Feia, Rio Grande do Norte, Brazil 72 

90 -7.22 146.81 Mount Missim, New Guinea 73 

91 -9.45 147.35 Varirata National Park, New Guinea 74 

92 -29.12 26.17 Bloemfontein, South Africa 75 

93 -37.62 144.42 Lerderderg Park, Australia 76 

94 -37.72 145.57 Mt Healesville and Donna Buang, Australia 77 

95 -41.33 173.05 Brightwater, Aotearoa New Zealand 78 

96 -41.32 173.26 Nelson, Aotearoa New Zealand 78 

97 -41.41 173.04 Faulkners, Wakefield, Aotearoa New Zealand 78 

98 -22.28 -41.68 Restinga de Jurubatiba, Rio de Janeiro, Brazil 79 

99 -15.95 -47.97 Brasília, Brazil 80 

100 -19.77 -40.04 Comboios, Espírito Santo, Brazil 81 

101 -23.37 -46.60 Cantareira, São Paulo, Brazil 82 

102 -19.57 -56.20 Pantanal, Brazil 83 

103 -22.39 -47.54 Rio Claro, São Paulo, Brazil Unpublished2 

104 -21.73 -48.02 Araraquara, São Paulo, Brazil 84 

105 -24.73 -64.67 El Rey National Park, Argentina 85 

106 -27.25 -65.88 Campo de Los Alisos, Argentina 85 

107 -27.23 -65.62 La Florida Provincial Park, Argentina 85 

108 -26.80 -65.30 San Javier y Yerba Huasi, Argentina 86 

109 -24.76 -64.69 Pozo Verde, El Rey National Park, Argentina 87 

110 -27.03 -65.77 Quebrada del Portugues, Argentina 85 

111 -24.10 -64.45 EcoPortal de Piedra, Argentina 85 

112 -23.69 -64.88 Calilegua National Park, Argentina 85 

113 -23.69 -64.87 Calilegua National Park, Argentina 85 

114 -22.28 -64.71 El Nogalar de los Toldos, Argentina 85 

115 -26.75 -65.33 Parque Sierra de San Javier, Argentina 87 

116 -26.80 -65.33 Parque Sierra de San Javier, Argentina Unpublished3 

117 -15.35 -39.20 Bahia, Brazil 88 

118 -15.21 -39.14 Bahia, Brazil 88 

119 -15.13 -39.12 Bahia, Brazil 88 

120 -15.25 -39.08 Bahia, Brazil 88 

121 -15.26 -39.09 Bahia, Brazil 88 

122 10.28 -84.05 Rara Avis Reserve, Costa Rica 89 

123 -17.85 146.08 Mission Beach, Queensland, Australia 90 

124 10.35 77.04 Valparai and Anamalai Reserve, India 91 

125 31.07 103.71 Dujiangyan, Sichuan Province, China 92 

126 31.05 103.74 Dujiangyan, Sichuan Province, China 92 

127 31.05 103.73 Dujiangyan, Sichuan Province, China 92 

128 31.06 103.72 Dujiangyan, Sichuan Province, China 92 

129 31.05 103.72 Dujiangyan, Sichuan Province, China 92 

130 31.08 103.70 Dujiangyan, Sichuan Province, China 92 

131 31.09 103.72 Dujiangyan, Sichuan Province, China 92 



 

 

35 

 

Network ID Latitude Longitude Location Reference 

132 31.09 103.73 Dujiangyan, Sichuan Province, China 92 

133 31.08 103.72 Dujiangyan, Sichuan Province, China 92 

134 31.06 103.73 Dujiangyan, Sichuan Province, China 92 

135 31.06 103.72 Dujiangyan, Sichuan Province, China 92 

136 31.05 103.73 Dujiangyan, Sichuan Province, China 92 

137 31.05 103.73 Dujiangyan, Sichuan Province, China 92 

138 37.98 -2.90 Serranía de Cazorla, Spain 93 

139 37.38 -5.71 El Viso del Alcor, Sevilla, Spain 93 

140 50.30 8.66 Friedberg, Hesse, Germany 94 

141 51.15 9.00 Kellerwald-Edersee, Germany 95 

142 -3.23 37.27 Mt Kilimanjaro, Tanzania 20 

143 -3.25 37.32 Mt Kilimanjaro, Tanzania 20 

144 -3.27 37.47 Mt Kilimanjaro, Tanzania 20 

145 -3.17 37.24 Mt Kilimanjaro, Tanzania 20 

146 -3.21 37.34 Mt Kilimanjaro, Tanzania 20 

147 -3.26 37.42 Mt Kilimanjaro, Tanzania 20 

148 -3.26 37.42 Mt Kilimanjaro, Tanzania 20 

149 -3.23 37.52 Mt Kilimanjaro, Tanzania 20 

150 -3.14 37.24 Mt Kilimanjaro, Tanzania 20 

151 -3.13 37.24 Mt Kilimanjaro, Tanzania 20 

152 -3.14 37.30 Mt Kilimanjaro, Tanzania 20 

153 -3.14 37.31 Mt Kilimanjaro, Tanzania 20 

154 -3.17 37.36 Mt Kilimanjaro, Tanzania 20 

155 -3.15 37.29 Mt Kilimanjaro, Tanzania 20 

156 -3.18 37.36 Mt Kilimanjaro, Tanzania 20 

157 -3.19 37.51 Mt Kilimanjaro, Tanzania 20 

158 -3.20 37.52 Mt Kilimanjaro, Tanzania 20 

159 -3.19 37.44 Mt Kilimanjaro, Tanzania 20 

160 -3.10 37.26 Mt Kilimanjaro, Tanzania 20 

161 -3.17 37.36 Mt Kilimanjaro, Tanzania 20 

162 -3.16 37.36 Mt Kilimanjaro, Tanzania 20 

163 -3.19 37.44 Mt Kilimanjaro, Tanzania 20 

164 -3.18 37.51 Mt Kilimanjaro, Tanzania 20 

165 -3.18 37.25 Mt Kilimanjaro, Tanzania 20 

166 -3.30 37.50 Mt Kilimanjaro, Tanzania 20 

167 -3.33 37.50 Mt Kilimanjaro, Tanzania 20 

168 -3.30 37.62 Mt Kilimanjaro, Tanzania 20 

169 -3.19 37.25 Mt Kilimanjaro, Tanzania 20 

170 -3.27 37.60 Mt Kilimanjaro, Tanzania 20 

171 -3.32 37.67 Mt Kilimanjaro, Tanzania 20 

172 -3.37 37.45 Mt Kilimanjaro, Tanzania 20 

173 -3.38 37.50 Mt Kilimanjaro, Tanzania 20 

174 -3.33 37.64 Mt Kilimanjaro, Tanzania 20 

175 -3.32 37.68 Mt Kilimanjaro, Tanzania 20 

176 -3.31 37.68 Mt Kilimanjaro, Tanzania 20 
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Network ID Latitude Longitude Location Reference 

177 -16.40 -67.50 Chulumani, Bolivia 47 

178 4.72 -75.57 Otún Quimbaya, Colombia 96 

179 4.70 -75.48 Ucumarí, Colombia 96 

180 -3.96 -79.06 Podocarpus National Park, Ecuador 97 

181 -4.10 -79.17 Podocarpus National Park, Ecuador 97 

182 -13.05 -71.54 San Pedro, Peru 98 

183 -13.17 -71.58 Wayqecha, Peru 98 

184 9.71 -69.58 Yacambú National Park, Venezuela 99 

185 10.39 -67.02 Altos de Pipe, Coastal Cordillera, Venezuela 99 

186 10.30 79.85 Point Calimere Wildlife Sanctuary, India 100 

187 20.60 -156.33 Kanaio Natural Area Reserve, Hawai’i 101 

188 -3.37 38.33 Taita Hills, Kenya 102 

189 40.13 -88.17 Champaign County, Illinois, USA 103 

190 -17.53 -149.83 Moorea, French Polynesia 104 

191 10.47 -83.51 Tortuguero, Costa Rica 105 

192 24.80 121.25 Fushan Experimental Forest, Taiwan 106 

193 22.46 91.77 Chittagong, Bangladesh 107 

194 10.42 -84.01 La Selva Biological Station, Costa Rica 108 

195 10.42 -84.02 La Selva Biological Station, Costa Rica 109 

196 39.14 2.94 Cabrera Island, Spain 110 

 

*Obtained through the Web of Life database111. 

Unpublished1: Data provided by Ruben Heleno. 

Unpublished2: Data provided by Marco Aurélio Pizo. 

Unpublished3: Data provided by Pedro G. Blendinger.  
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Supplementary Table 2. Quantitative metrics of network sampling. Sampling intensity and 

completeness aim to account for how complete network sampling was in terms of species 

interactions, while sampling hours and months account for the time-span of the study. 

 

Sampling metric Rationale 

Sampling intensity Sampling intensity was calculated as the square-root of the number 

of interaction events divided by the square-root of the product of the 

number of plant and animal species in the local network112. Sampling 

intensity was included in our models because it presented a strong 

and positive relationship with the ratio between the number of 

interactions sampled in the local network and the number of known 

possible interactions (among that same set of species) in the region 

(for the subset of networks within the Aotearoa New Zealand meta-

network) (Supplementary Fig. 7).  

Sampling completeness Sampling completeness was calculated as the observed richness of 

links divided by the estimated richness of links in the local 

network113. We used the Chao 1 richness estimator114 to obtain the 

estimated number of links in our networks. Sampling completeness 

was not included in our models because it did not present a significant 

relationship with the ratio between the number of interactions in the 

local network and the number of known possible interactions (among 

that same set of species) in the region (Supplementary Fig. 7). Thus, 

we considered that this metric did not provide a good representation 

of how complete network sampling was in terms of species 

interactions. 

Sampling hours Number of sampling hours was included in our statistical models 

because it presented strong and positive relationships with bird 

richness, plant richness and number of links in the local networks 

(Supplementary Fig. 8).  

Sampling months Number of sampling months was included in our statistical models 

because it presented a strong and positive relationship with the ratio 

between the number of interactions in the local network and the 

number of known possible interactions (among that same set of 

species) in the region (Supplementary Fig. 7), as well as with plant 

richness and number of links in the local networks (for the entire 

dataset) (Supplementary Fig. 8).  
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Supplementary Table 3. Description of variables used to generate the method’s 

dissimilarity matrix.  

 
  

Variable Description 

Sampling design Whether the sampling design was ‘transect’, ‘plot’, 

‘mist-net’, ‘focal observation’, ‘camera-trap’, or any 

combination of these. 

Sampling focus Whether the focal organisms were birds, plants, or both. 

As such, this variable determines if authors used a 

zoocentric or a phytocentric sampling method (or a 

combination of the two).  

Sampling coverage Whether there were focal species (‘partial coverage’) or 

not (‘total coverage’). 

Interaction frequency type Whether interaction frequency was estimated by 

counting the number of bird visits, number of fruits 

consumed by the bird, number of seeds in bird 

droppings, or number of bird droppings with seeds. 
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Supplementary Table 4. Multiple predictors of species turnover (βS) on plant-frugivore 

networks. Here, we used the binary version of ecoregion and biome distance matrices. P values 

were calculated using a two-tailed statistical test that combines Generalized Additive Models 

(GAM) and Multiple Regression on distance Matrices (MRM). In this approach, the non-

independence of distances from each local network is accounted for in the hypothesis testing by 

performing 1,000 permutations of the response matrix (see Methods). EDF represents the 

estimated degrees of freedom for each smooth term in the model. N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.976 1734.300 0.001 

Ecoregion (same) -0.122 -38.093 0.001 

Biome (same) -0.008 -8.799 0.001 

Smooth Terms EDF F P 

s (human disturbance distance) 8.312 28.504 0.001 

s (spatial distance) 8.866 725.571 0.001 

s (elevational difference) 5.589 99.954 0.001 

s (hours distance) 6.917 4.004 0.619 

s (months distance) 6.755 6.525 0.089 

s (years distance) 6.402 7.422 0.068 

s (sampling intensity distance) 1.007 26.580 0.005 

s (methods distance) 8.039 10.911 0.015 

Bold values indicate statistically significant results (P < 0.05). 
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Supplementary Table 5. Multiple predictors of species turnover (βS) on plant-frugivore 

networks. Here, we used the quantitative version (environmental dissimilarity) of ecoregion and 

biome distance matrices. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 19,110. 

 

Smooth Terms EDF F P 

s (ecoregion distance) 8.570 137.969 0.001 

s (biome distance) 8.202 37.937 0.001 

s (human disturbance distance) 8.339 29.465 0.001 

s (spatial distance) 8.890 698.382 0.001 

s (elevational difference) 5.517 98.173 0.001 

s (hours distance) 7.330 4.876 0.448 

s (months distance) 5.371 5.811 0.109 

s (years distance) 6.152 7.741 0.063 

s (sampling intensity distance) 4.365 6.108 0.315 

s (methods distance) 7.996 11.474 0.017 

Bold values indicate statistically significant results (P < 0.05).   
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Supplementary Table 6. Multiple predictors of plant-frugivore interaction dissimilarity 

(βWN). Here, we used the quantitative version (environmental dissimilarity) of ecoregion and 

biome distance matrices. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. (P < 0.05). N 

pairs of networks = 19,110. 

 

Smooth Terms EDF F P 

s (ecoregion distance) 8.595 110.122 0.001 

s (biome distance) 7.827 10.492 0.022 

s (human disturbance distance) 8.570 32.573 0.001 

s (spatial distance) 8.855 81.843 0.001 

s (elevational difference) 6.024 48.426 0.001 

s (hours distance) 1.353 10.637 0.043 

s (months distance) 5.800 7.876 0.045 

s (years distance) 7.135 13.007 0.020 

s (sampling intensity distance) 1.010 5.437 0.267 

s (methods distance) 7.878 17.094 0.003 

Bold values indicate statistically significant results (P < 0.05).   
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Supplementary Table 7. Multiple predictors of plant-frugivore network structural 

dissimilarity. Here, we used the binary version of ecoregion and biome distance matrices. P 

values were calculated using a two-tailed statistical test that combines Generalized Additive 

Models (GAM) and Multiple Regression on distance Matrices (MRM). In this approach, the non-

independence of distances from each local network is accounted for in the hypothesis testing by 

performing 1,000 permutations of the response matrix (see Methods). EDF represents the 

estimated degrees of freedom for each smooth term in the model. N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 2.689 222.572 0.002 

Ecoregion (same) 0.043 0.632 0.788 

Biome (same) -0.028 -1.345 0.770 

Smooth Terms EDF F P 

s (human disturbance distance) 5.923 9.346 0.429 

s (spatial distance) 8.474 20.408 0.021 

s (elevational difference) 8.220 5.510 0.749 

s (hours distance) 8.006 7.944 0.969 

s (months distance) 5.961 7.078 0.693 

s (years distance) 6.868 14.999 0.461 

s (sampling intensity distance) 8.762 238.987 0.002 

s (methods distance) 8.586 17.372 0.231 

Bold values indicate statistically significant results (P < 0.05). 
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Supplementary Table 8. Multiple predictors of plant-frugivore network structural 

dissimilarity. Here, we used the quantitative version (environmental dissimilarity) of ecoregion 

and biome distance matrices. P values were calculated using a two-tailed statistical test that 

combines Generalized Additive Models (GAM) and Multiple Regression on distance Matrices 

(MRM). In this approach, the non-independence of distances from each local network is 

accounted for in the hypothesis testing by performing 1,000 permutations of the response matrix 

(see Methods). EDF represents the estimated degrees of freedom for each smooth term in the 

model. N pairs of networks = 19,110. 

 

Smooth Terms EDF F P 

s (ecoregion distance) 4.272 15.275 0.193 

s (biome distance) 7.697 12.115 0.568 

s (human disturbance distance) 5.993 9.264 0.438 

s (spatial distance) 8.465 18.465 0.018 

s (elevational difference) 8.290 5.679 0.713 

s (hours distance) 7.857 8.913 0.955 

s (months distance) 6.173 8.239 0.606 

s (years distance) 6.751 12.872 0.545 

s (sampling intensity distance) 8.760 239.475 0.002 

s (methods distance) 8.501 15.584 0.257 

Bold values indicate statistically significant results (P < 0.05). 
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Supplementary Table 9. Multiple predictors of species turnover (βS) on plant-frugivore 

networks. Here, we used a buffer zone of 500 km and the alternative scenario 1 (see Alternative 

scenarios section) during the data cleaning process. The binary versions of ecoregion and biome 

distance matrices were used for estimating the effects of ecoregion and biome borders on the 

response variable. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.976 1735.328 0.001 

Ecoregion (same) -0.122 -38.147 0.001 

Biome (same) -0.008 -8.809 0.001 

Smooth Terms EDF F P 

s (human disturbance distance) 8.312 28.538 0.001 

s (spatial distance) 8.867 725.453 0.001 

s (elevational difference) 5.600 99.711 0.001 

s (hours distance) 6.928 4.042 0.580 

s (months distance) 6.761 6.566 0.083 

s (years distance) 6.412 7.472 0.059 

s (sampling intensity distance) 1.001 26.885 0.005 

s (methods distance) 8.032 10.833 0.023 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 10. Multiple predictors of species turnover (βS) on plant-frugivore 

networks. Here, we used a buffer zone of 500 km and the alternative scenario 2 (see Alternative 

scenarios section) during the data cleaning process. The binary versions of ecoregion and biome 

distance matrices were used for estimating the effects of ecoregion and biome borders on the 

response variable. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.976 1752.859 0.001 

Ecoregion (same) -0.123 -38.615 0.001 

Biome (same) -0.008 -8.084 0.001 

Smooth Terms EDF F P 

s (human disturbance distance) 8.437 28.851 0.001 

s (spatial distance) 8.865 719.288 0.001 

s (elevational difference) 5.600 99.486 0.001 

s (hours distance) 7.126 4.330 0.559 

s (months distance) 4.001 6.532 0.091 

s (years distance) 6.548 8.206 0.069 

s (sampling intensity distance) 3.464 8.113 0.166 

s (methods distance) 8.114 11.641 0.013 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 11. Multiple predictors of species turnover (βS) on plant-frugivore 

networks. Here, we used a buffer zone of 100 km and the alternative scenario 1 (see Alternative 

scenarios section) during the data cleaning process. The binary versions of ecoregion and biome 

distance matrices were used for estimating the effects of ecoregion and biome borders on the 

response variable. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.976 1736.530 0.001 

Ecoregion (same) -0.122 -38.181 0.001 

Biome (same) -0.009 -8.781 0.001 

Smooth Terms EDF F P 

s (human disturbance distance) 8.317 28.664 0.002 

s (spatial distance) 8.866 725.286 0.001 

s (elevational difference) 5.606 99.783 0.001 

s (hours distance) 6.888 3.931 0.606 

s (months distance) 6.827 6.601 0.091 

s (years distance) 6.406 7.500 0.073 

s (sampling intensity distance) 1.002 26.760 0.008 

s (methods distance) 8.029 10.895 0.016 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 12. Multiple predictors of species turnover (βS) on plant-frugivore 

networks. Here, we used a buffer zone of 100 km and the alternative scenario 2 (see Alternative 

scenarios section) during the data cleaning process. The binary versions of ecoregion and biome 

distance matrices were used for estimating the effects of ecoregion and biome borders on the 

response variable. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.976 1755.726 0.001 

Ecoregion (same) -0.122 -38.561 0.001 

Biome (same) -0.008 -8.354 0.001 

Smooth Terms EDF F P 

s (human disturbance distance) 8.341 29.073 0.002 

s (spatial distance) 8.863 716.735 0.001 

s (elevational difference) 5.578 100.041 0.001 

s (hours distance) 6.987 3.990 0.592 

s (months distance) 6.819 6.693 0.107 

s (years distance) 6.484 7.966 0.063 

s (sampling intensity distance) 1.000 24.580 0.005 

s (methods distance) 8.013 11.066 0.018 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 13. Multiple predictors of species turnover (βS) on plant-frugivore 

networks. Here, we used a buffer zone of 100 km and the alternative scenario 3 (see Alternative 

scenarios section) during the data cleaning process. The binary versions of ecoregion and biome 

distance matrices were used for estimating the effects of ecoregion and biome borders on the 

response variable. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.976 1735.345 0.001 

Ecoregion (same) -0.122 -38.157 0.001 

Biome (same) -0.009 -8.775 0.001 

Smooth Terms EDF F P 

s (human disturbance distance) 8.317 28.665 0.002 

s (spatial distance) 8.866 723.914 0.001 

s (elevational difference) 5.587 99.935 0.001 

s (hours distance) 6.918 4.014 0.605 

s (months distance) 6.783 6.589 0.100 

s (years distance) 6.406 7.492 0.078 

s (sampling intensity distance) 1.000 26.866 0.004 

s (methods distance) 8.033 10.910 0.011 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 14. Multiple predictors of species turnover (βS) on plant-frugivore 

networks. Here, we used a buffer zone of 1000 km and the alternative scenario 1 (see 

Alternative scenarios section) during the data cleaning process. The binary versions of ecoregion 

and biome distance matrices were used for estimating the effects of ecoregion and biome borders 

on the response variable. P values were calculated using a two-tailed statistical test that 

combines Generalized Additive Models (GAM) and Multiple Regression on distance Matrices 

(MRM). In this approach, the non-independence of distances from each local network is 

accounted for in the hypothesis testing by performing 1,000 permutations of the response matrix 

(see Methods). EDF represents the estimated degrees of freedom for each smooth term in the 

model. N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.976 1734.871 0.001 

Ecoregion (same) -0.122 -38.147 0.001 

Biome (same) -0.009 -8.789 0.001 

Smooth Terms EDF F P 

s (human disturbance distance) 8.309 28.531 0.001 

s (spatial distance) 8.866 725.141 0.001 

s (elevational difference) 5.605 99.321 0.001 

s (hours distance) 6.911 4.049 0.602 

s (months distance) 6.761 6.579 0.099 

s (years distance) 6.414 7.440 0.067 

s (sampling intensity distance) 1.002 26.590 0.005 

s (methods distance) 8.030 10.869 0.019 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 15. Multiple predictors of species turnover (βS) on plant-frugivore 

networks. Here, we used a buffer zone of 1000 km and the alternative scenario 2 (see 

Alternative scenarios section) during the data cleaning process. The binary versions of ecoregion 

and biome distance matrices were used for estimating the effects of ecoregion and biome borders 

on the response variable. P values were calculated using a two-tailed statistical test that 

combines Generalized Additive Models (GAM) and Multiple Regression on distance Matrices 

(MRM). In this approach, the non-independence of distances from each local network is 

accounted for in the hypothesis testing by performing 1,000 permutations of the response matrix 

(see Methods). EDF represents the estimated degrees of freedom for each smooth term in the 

model. N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.976 1755.726 0.001 

Ecoregion (same) -0.122 -38.561 0.001 

Biome (same) -0.008 -8.354 0.001 

Smooth Terms EDF F P 

s (human disturbance distance) 8.341 29.073 0.001 

s (spatial distance) 8.863 716.735 0.001 

s (elevational difference) 5.578 100.041 0.001 

s (hours distance) 6.987 3.990 0.608 

s (months distance) 6.819 6.693 0.087 

s (years distance) 6.484 7.966 0.061 

s (sampling intensity distance) 1.000 24.580 0.008 

s (methods distance) 8.013 11.066 0.016 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 16. Multiple predictors of species turnover (βS) on plant-frugivore 

networks. Here, we used a buffer zone of 1000 km and the alternative scenario 3 (see 

Alternative scenarios section) during the data cleaning process. The binary versions of ecoregion 

and biome distance matrices were used for estimating the effects of ecoregion and biome borders 

on the response variable. P values were calculated using a two-tailed statistical test that 

combines Generalized Additive Models (GAM) and Multiple Regression on distance Matrices 

(MRM). In this approach, the non-independence of distances from each local network is 

accounted for in the hypothesis testing by performing 1,000 permutations of the response matrix 

(see Methods). EDF represents the estimated degrees of freedom for each smooth term in the 

model. N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.976 1733.860 0.001 

Ecoregion (same) -0.122 -38.095 0.001 

Biome (same) -0.009 -8.778 0.001 

Smooth Terms EDF F P 

s (human disturbance distance) 8.308 28.497 0.001 

s (spatial distance) 8.866 725.333 0.001 

s (elevational difference) 5.594 99.561 0.001 

s (hours distance) 6.899 4.011 0.608 

s (months distance) 6.744 6.537 0.109 

s (years distance) 6.404 7.389 0.063 

s (sampling intensity distance) 1.004 26.506 0.006 

s (methods distance) 8.037 10.951 0.021 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 17. Multiple predictors of plant-frugivore interaction dissimilarity 

(βWN). Here, we used a buffer zone of 500 km and the alternative scenario 1 (see Alternative 

scenarios section) during the data cleaning process. The binary versions of ecoregion and biome 

distance matrices were used for estimating the effects of ecoregion and biome borders on the 

response variable. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.997 2966.347 0.001 

Ecoregion (same) -0.070 -36.417 0.001 

Biome (same) -0.002 -3.317 0.039 

Smooth Terms EDF F P 

s (human disturbance distance) 8.536 30.035 0.001 

s (spatial distance) 8.785 65.220 0.001 

s (elevational difference) 6.185 47.606 0.001 

s (hours distance) 1.545 5.545 0.294 

s (months distance) 5.502 6.966 0.074 

s (years distance) 7.216 11.880 0.013 

s (sampling intensity distance) 1.062 4.686 0.331 

s (methods distance) 7.848 15.987 0.004 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 18. Multiple predictors of plant-frugivore interaction dissimilarity 

(βWN). Here, we used a buffer zone of 500 km and the alternative scenario 2 (see Alternative 

scenarios section) during the data cleaning process. The binary versions of ecoregion and biome 

distance matrices were used for estimating the effects of ecoregion and biome borders on the 

response variable. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.997 3002.392 0.001 

Ecoregion (same) -0.069 -36.473 0.001 

Biome (same) -0.002 -3.313 0.034 

Smooth Terms EDF F P 

s (human disturbance distance) 8.551 30.504 0.001 

s (spatial distance) 8.783 64.233 0.001 

s (elevational difference) 6.107 47.553 0.001 

s (hours distance) 1.590 5.325 0.307 

s (months distance) 5.475 7.030 0.092 

s (years distance) 7.216 11.941 0.022 

s (sampling intensity distance) 1.003 5.041 0.319 

s (methods distance) 7.867 16.082 0.003 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 19. Multiple predictors of plant-frugivore interaction dissimilarity 

(βWN). Here, we used a buffer zone of 100 km and the alternative scenario 1 (see Alternative 

scenarios section) during the data cleaning process. The binary versions of ecoregion and biome 

distance matrices were used for estimating the effects of ecoregion and biome borders on the 

response variable. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.997 2966.503 0.001 

Ecoregion (same) -0.070 -36.418 0.001 

Biome (same) -0.002 -3.321 0.047 

Smooth Terms EDF F P 

s (human disturbance distance) 8.536 30.011 0.001 

s (spatial distance) 8.785 65.161 0.001 

s (elevational difference) 6.190 47.625 0.001 

s (hours distance) 1.546 5.546 0.272 

s (months distance) 5.504 6.965 0.074 

s (years distance) 7.215 11.883 0.021 

s (sampling intensity distance) 1.056 4.744 0.330 

s (methods distance) 7.851 16.023 0.005 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 20. Multiple predictors of plant-frugivore interaction dissimilarity 

(βWN). Here, we used a buffer zone of 100 km and the alternative scenario 2 (see Alternative 

scenarios section) during the data cleaning process. The binary versions of ecoregion and biome 

distance matrices were used for estimating the effects of ecoregion and biome borders on the 

response variable. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.997 3002.382 0.001 

Ecoregion (same) -0.069 -36.474 0.001 

Biome (same) -0.002 -3.312 0.049 

Smooth Terms EDF F P 

s (human disturbance distance) 8.551 30.506 0.002 

s (spatial distance) 8.782 64.153 0.001 

s (elevational difference) 6.109 47.538 0.001 

s (hours distance) 1.579 5.376 0.298 

s (months distance) 5.483 7.037 0.075 

s (years distance) 7.217 11.954 0.019 

s (sampling intensity distance) 1.003 5.036 0.311 

s (methods distance) 7.867 16.089 0.004 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 21. Multiple predictors of plant-frugivore interaction dissimilarity 

(βWN). Here, we used a buffer zone of 100 km and the alternative scenario 3 (see Alternative 

scenarios section) during the data cleaning process. The binary versions of ecoregion and biome 

distance matrices were used for estimating the effects of ecoregion and biome borders on the 

response variable. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.997 2964.236 0.001 

Ecoregion (same) -0.070 -36.405 0.001 

Biome (same) -0.002 -3.324 0.046 

Smooth Terms EDF F P 

s (human disturbance distance) 8.534 29.980 0.001 

s (spatial distance) 8.785 65.228 0.001 

s (elevational difference) 6.171 47.691 0.001 

s (hours distance) 1.559 5.453 0.301 

s (months distance) 5.490 6.908 0.076 

s (years distance) 7.210 11.881 0.020 

s (sampling intensity distance) 1.022 5.148 0.281 

s (methods distance) 7.850 16.024 0.004 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 22. Multiple predictors of plant-frugivore interaction dissimilarity 

(βWN). Here, we used a buffer zone of 1000 km and the alternative scenario 1 (see Alternative 

scenarios section) during the data cleaning process. The binary versions of ecoregion and biome 

distance matrices were used for estimating the effects of ecoregion and biome borders on the 

response variable. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.997 2966.167 0.001 

Ecoregion (same) -0.070 -36.419 0.001 

Biome (same) -0.002 -3.311 0.032 

Smooth Terms EDF F P 

s (human disturbance distance) 8.536 30.036 0.001 

s (spatial distance) 8.785 65.100 0.001 

s (elevational difference) 6.187 47.586 0.001 

s (hours distance) 1.532 5.585 0.299 

s (months distance) 5.511 6.974 0.076 

s (years distance) 7.217 11.890 0.019 

s (sampling intensity distance) 1.085 4.382 0.377 

s (methods distance) 7.849 15.996 0.004 

Bold values indicate statistically significant results (P < 0.05).  



 

 

58 

 

Supplementary Table 23. Multiple predictors of plant-frugivore interaction dissimilarity 

(βWN). Here, we used a buffer zone of 1000 km and the alternative scenario 2 (see Alternative 

scenarios section) during the data cleaning process. The binary versions of ecoregion and biome 

distance matrices were used for estimating the effects of ecoregion and biome borders on the 

response variable. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.997 3002.382 0.001 

Ecoregion (same) -0.069 -36.474 0.001 

Biome (same) -0.002 -3.312 0.048 

Smooth Terms EDF F P 

s (human disturbance distance) 8.551 30.506 0.002 

s (spatial distance) 8.782 64.153 0.001 

s (elevational difference) 6.109 47.538 0.001 

s (hours distance) 1.579 5.376 0.311 

s (months distance) 5.483 7.037 0.054 

s (years distance) 7.217 11.954 0.017 

s (sampling intensity distance) 1.003 5.036 0.320 

s (methods distance) 7.867 16.089 0.004 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 24. Multiple predictors of plant-frugivore interaction dissimilarity 

(βWN). Here, we used a buffer zone of 1000 km and the alternative scenario 3 (see Alternative 

scenarios section) during the data cleaning process. The binary versions of ecoregion and biome 

distance matrices were used for estimating the effects of ecoregion and biome borders on the 

response variable. P values were calculated using a two-tailed statistical test that combines 

Generalized Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In 

this approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 0.997 2964.095 0.001 

Ecoregion (same) -0.070 -36.404 0.001 

Biome (same) -0.002 -3.318 0.042 

Smooth Terms EDF F P 

s (human disturbance distance) 8.534 29.989 0.002 

s (spatial distance) 8.785 65.276 0.001 

s (elevational difference) 6.170 47.687 0.001 

s (hours distance) 1.547 5.482 0.300 

s (months distance) 5.491 6.909 0.073 

s (years distance) 7.210 11.857 0.020 

s (sampling intensity distance) 1.026 4.983 0.287 

s (methods distance) 7.849 16.010 0.003 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 25. Multiple predictors of plant-frugivore network structural 

dissimilarity. Here, we used a buffer zone of 500 km and the alternative scenario 1 (see 

Alternative scenarios section) during the data cleaning process. The binary versions of ecoregion 

and biome distance matrices were used for estimating the effects of ecoregion and biome borders 

on the response variable. P values were calculated using a two-tailed statistical test that 

combines Generalized Additive Models (GAM) and Multiple Regression on distance Matrices 

(MRM). In this approach, the non-independence of distances from each local network is 

accounted for in the hypothesis testing by performing 1,000 permutations of the response matrix 

(see Methods). EDF represents the estimated degrees of freedom for each smooth term in the 

model. N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 2.686 221.962 0.004 

Ecoregion (same) 0.044 0.646 0.775 

Biome (same) -0.024 -1.115 0.826 

Smooth Terms EDF F P 

s (human disturbance distance) 5.948 9.481 0.439 

s (spatial distance) 8.473 20.322 0.015 

s (elevational difference) 8.233 5.501 0.724 

s (hours distance) 8.051 7.960 0.968 

s (months distance) 6.239 7.217 0.667 

s (years distance) 6.830 13.941 0.497 

s (sampling intensity distance) 8.759 240.837 0.001 

s (methods distance) 8.595 17.496 0.233 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 26. Multiple predictors of plant-frugivore network structural 

dissimilarity. Here, we used a buffer zone of 500 km and the alternative scenario 2 (see 

Alternative scenarios section) during the data cleaning process. The binary versions of ecoregion 

and biome distance matrices were used for estimating the effects of ecoregion and biome borders 

on the response variable. P values were calculated using a two-tailed statistical test that 

combines Generalized Additive Models (GAM) and Multiple Regression on distance Matrices 

(MRM). In this approach, the non-independence of distances from each local network is 

accounted for in the hypothesis testing by performing 1,000 permutations of the response matrix 

(see Methods). EDF represents the estimated degrees of freedom for each smooth term in the 

model. N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 2.685 222.539 0.002 

Ecoregion (same) 0.084 1.229 0.561 

Biome (same) -0.024 -1.157 0.801 

Smooth Terms EDF F P 

s (human disturbance distance) 5.417 9.472 0.460 

s (spatial distance) 8.587 28.061 0.002 

s (elevational difference) 7.800 3.418 0.904 

s (hours distance) 8.088 7.568 0.973 

s (months distance) 7.129 7.330 0.682 

s (years distance) 6.823 12.437 0.555 

s (sampling intensity distance) 8.758 275.291 0.001 

s (methods distance) 8.550 18.139 0.191 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 27. Multiple predictors of plant-frugivore network structural 

dissimilarity. Here, we used a buffer zone of 100 km and the alternative scenario 1 (see 

Alternative scenarios section) during the data cleaning process. The binary versions of ecoregion 

and biome distance matrices were used for estimating the effects of ecoregion and biome borders 

on the response variable. P values were calculated using a two-tailed statistical test that 

combines Generalized Additive Models (GAM) and Multiple Regression on distance Matrices 

(MRM). In this approach, the non-independence of distances from each local network is 

accounted for in the hypothesis testing by performing 1,000 permutations of the response matrix 

(see Methods). EDF represents the estimated degrees of freedom for each smooth term in the 

model. N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 2.691 222.709 0.007 

Ecoregion (same) 0.052 0.757 0.743 

Biome (same) -0.028 -1.364 0.762 

Smooth Terms EDF F P 

s (human disturbance distance) 5.834 9.562 0.428 

s (spatial distance) 8.470 20.654 0.018 

s (elevational difference) 8.080 4.412 0.817 

s (hours distance) 8.130 8.456 0.965 

s (months distance) 6.321 7.283 0.647 

s (years distance) 6.827 13.789 0.501 

s (sampling intensity distance) 8.745 241.194 0.003 

s (methods distance) 8.590 17.524 0.209 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 28. Multiple predictors of plant-frugivore network structural 

dissimilarity. Here, we used a buffer zone of 100 km and the alternative scenario 2 (see 

Alternative scenarios section) during the data cleaning process. The binary versions of ecoregion 

and biome distance matrices were used for estimating the effects of ecoregion and biome borders 

on the response variable. P values were calculated using a two-tailed statistical test that 

combines Generalized Additive Models (GAM) and Multiple Regression on distance Matrices 

(MRM). In this approach, the non-independence of distances from each local network is 

accounted for in the hypothesis testing by performing 1,000 permutations of the response matrix 

(see Methods). EDF represents the estimated degrees of freedom for each smooth term in the 

model. N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 2.684 222.432 0.004 

Ecoregion (same) 0.089 1.311 0.549 

Biome (same) -0.023 -1.085 0.812 

Smooth Terms EDF F P 

s (human disturbance distance) 5.330 9.475 0.436 

s (spatial distance) 8.590 28.764 0.003 

s (elevational difference) 1.026 4.544 0.803 

s (hours distance) 8.122 7.758 0.981 

s (months distance) 7.189 7.442 0.677 

s (years distance) 6.821 12.365 0.583 

s (sampling intensity distance) 8.761 275.772 0.001 

s (methods distance) 8.540 17.893 0.205 

Bold values indicate statistically significant results (P < 0.05).   
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Supplementary Table 29. Multiple predictors of plant-frugivore network structural 

dissimilarity. Here, we used a buffer zone of 100 km and the alternative scenario 3 (see 

Alternative scenarios section) during the data cleaning process. The binary versions of ecoregion 

and biome distance matrices were used for estimating the effects of ecoregion and biome borders 

on the response variable. P values were calculated using a two-tailed statistical test that 

combines Generalized Additive Models (GAM) and Multiple Regression on distance Matrices 

(MRM). In this approach, the non-independence of distances from each local network is 

accounted for in the hypothesis testing by performing 1,000 permutations of the response matrix 

(see Methods). EDF represents the estimated degrees of freedom for each smooth term in the 

model. N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 2.689 222.557 0.008 

Ecoregion (same) 0.044 0.639 0.754 

Biome (same) -0.031 -1.443 0.741 

Smooth Terms EDF F P 

s (human disturbance distance) 5.869 9.131 0.446 

s (spatial distance) 8.479 20.589 0.021 

s (elevational difference) 8.217 5.476 0.755 

s (hours distance) 8.052 7.939 0.966 

s (months distance) 6.005 7.020 0.675 

s (years distance) 6.834 14.956 0.411 

s (sampling intensity distance) 8.746 238.220 0.003 

s (methods distance) 8.583 17.496 0.206 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 30. Multiple predictors of plant-frugivore network structural 

dissimilarity. Here, we used a buffer zone of 1000 km and the alternative scenario 1 (see 

Alternative scenarios section) during the data cleaning process. The binary versions of ecoregion 

and biome distance matrices were used for estimating the effects of ecoregion and biome borders 

on the response variable. P values were calculated using a two-tailed statistical test that 

combines Generalized Additive Models (GAM) and Multiple Regression on distance Matrices 

(MRM). In this approach, the non-independence of distances from each local network is 

accounted for in the hypothesis testing by performing 1,000 permutations of the response matrix 

(see Methods). EDF represents the estimated degrees of freedom for each smooth term in the 

model. N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 2.687 222.335 0.001 

Ecoregion (same) 0.047 0.681 0.776 

Biome (same) -0.026 -1.251 0.802 

Smooth Terms EDF F P 

s (human disturbance distance) 5.954 9.761 0.432 

s (spatial distance) 8.483 20.514 0.010 

s (elevational difference) 8.243 5.492 0.736 

s (hours distance) 8.009 7.896 0.970 

s (months distance) 6.128 6.943 0.699 

s (years distance) 6.852 13.832 0.496 

s (sampling intensity distance) 8.789 245.694 0.002 

s (methods distance) 8.593 17.437 0.229 

Bold values indicate statistically significant results (P < 0.05).  



 

 

66 

 

Supplementary Table 31. Multiple predictors of plant-frugivore network structural 

dissimilarity. Here, we used a buffer zone of 1000 km and the alternative scenario 2 (see 

Alternative scenarios section) during the data cleaning process. The binary versions of ecoregion 

and biome distance matrices were used for estimating the effects of ecoregion and biome borders 

on the response variable. P values were calculated using a two-tailed statistical test that 

combines Generalized Additive Models (GAM) and Multiple Regression on distance Matrices 

(MRM). In this approach, the non-independence of distances from each local network is 

accounted for in the hypothesis testing by performing 1,000 permutations of the response matrix 

(see Methods). EDF represents the estimated degrees of freedom for each smooth term in the 

model. N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 2.685 222.527 0.004 

Ecoregion (same) 0.084 1.225 0.562 

Biome (same) -0.022 -1.058 0.844 

Smooth Terms EDF F P 

s (human disturbance distance) 5.417 9.454 0.427 

s (spatial distance) 8.588 28.139 0.008 

s (elevational difference) 7.796 3.409 0.893 

s (hours distance) 8.098 7.547 0.977 

s (months distance) 7.123 7.341 0.669 

s (years distance) 6.851 12.533 0.570 

s (sampling intensity distance) 8.757 275.296 0.001 

s (methods distance) 8.551 18.041 0.182 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 32. Multiple predictors of plant-frugivore network structural 

dissimilarity. Here, we used a buffer zone of 1000 km and the alternative scenario 3 (see 

Alternative scenarios section) during the data cleaning process. The binary versions of ecoregion 

and biome distance matrices were used for estimating the effects of ecoregion and biome borders 

on the response variable. P values were calculated using a two-tailed statistical test that 

combines Generalized Additive Models (GAM) and Multiple Regression on distance Matrices 

(MRM). In this approach, the non-independence of distances from each local network is 

accounted for in the hypothesis testing by performing 1,000 permutations of the response matrix 

(see Methods). EDF represents the estimated degrees of freedom for each smooth term in the 

model. N pairs of networks = 19,110. 

 

Parametric coefficients Estimate t P 

Intercept 2.692 223.088 0.008 

Ecoregion (same) 0.045 0.663 0.766 

Biome (same) -0.033 -1.581 0.748 

Smooth Terms EDF F P 

s (human disturbance distance) 5.943 9.649 0.423 

s (spatial distance) 8.491 20.649 0.013 

s (elevational difference) 8.230 5.556 0.727 

s (hours distance) 8.063 8.161 0.956 

s (months distance) 5.980 6.955 0.711 

s (years distance) 6.778 14.670 0.479 

s (sampling intensity distance) 8.792 243.787 0.001 

s (methods distance) 8.578 17.155 0.237 

Bold values indicate statistically significant results (P < 0.05).  



 

 

68 

 

Supplementary Table 33. Multiple predictors of plant-frugivore interaction dissimilarity 

(βWN). Here, we used the binary versions of ecoregion and biome distance matrices and removed 

the study with the greatest number of networks in our dataset (study ID 76)20 from the data. P 

values were calculated using a two-tailed statistical test that combines Generalized Additive 

Models (GAM) and Multiple Regression on distance Matrices (MRM). In this approach, the non-

independence of distances from each local network is accounted for in the hypothesis testing by 

performing 1,000 permutations of the response matrix (see Methods). EDF represents the 

estimated degrees of freedom for each smooth term in the model. N pairs of networks = 12,880. 

 

Parametric coefficients Estimate t P 

Intercept 0.995 2816.925 0.001 

Ecoregion (same) -0.077 -33.132 0.001 

Biome (same) -0.0008 -1.254 0.380 

Smooth Terms EDF F P 

s (human disturbance distance) 6.871 11.919 0.005 

s (spatial distance) 8.917 139.693 0.001 

s (elevational difference) 5.502 9.025 0.035 

s (hours distance) 2.007 7.295 0.106 

s (months distance) 7.806 23.758 0.001 

s (years distance) 8.500 33.731 0.001 

s (sampling intensity distance) 1.002 0.015 0.992 

s (methods distance) 8.571 61.413 0.001 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 34. Multiple predictors of plant-frugivore network structural 

dissimilarity. Here, we used the binary versions of ecoregion and biome distance matrices and 

removed the study with the greatest number of networks in our dataset (study ID 76)20 from the 

data. P values were calculated using a two-tailed statistical test that combines Generalized 

Additive Models (GAM) and Multiple Regression on distance Matrices (MRM). In this 

approach, the non-independence of distances from each local network is accounted for in the 

hypothesis testing by performing 1,000 permutations of the response matrix (see Methods). EDF 

represents the estimated degrees of freedom for each smooth term in the model. N pairs of 

networks = 12,880. 

 

Parametric coefficients Estimate t P 

Intercept 2.568 184.419 0.022 

Ecoregion (same) -0.075 -0.826 0.544 

Biome (same) 0.041 1.595 0.679 

Smooth Terms EDF F P 

s (human disturbance distance) 4.419 13.240 0.121 

s (spatial distance) 8.540 27.067 0.005 

s (elevational difference) 7.486 11.064 0.364 

s (hours distance) 7.717 8.123 0.923 

s (months distance) 6.900 5.378 0.714 

s (years distance) 5.505 10.312 0.424 

s (sampling intensity distance) 8.534 126.502 0.008 

s (methods distance) 8.489 14.492 0.190 

Bold values indicate statistically significant results (P < 0.05). 
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Supplementary Table 35. Multiple predictors of interaction rewiring (βOS) on plant-

frugivore networks. Here, we show the results from a Generalized Additive Mixed-effects 

Model (GAMM) using network IDs as random effects (one random factor for each of the pairs 

across which distance is compared) to account for the non-independence of distances (see 

Rewiring analysis section). P values of smooth terms are associated with Wald-type tests of 

smooth components’ equality to zero. Linear terms are used for the categorical variables 

(ecoregions and biomes). EDF represents the estimated degrees of freedom for each smooth term 

in the model. N pairs of networks = 1,314. 

 

Parametric coefficients Estimate t P 

Intercept 0.576 25.267 2x10-16 

Ecoregion (same) -0.017 -0.643 0.521 

Biome (same) -0.033 -1.354 0.176 

Smooth Terms EDF F P 

s (human disturbance distance) 1.864 5.039 0.005 

s (spatial distance) 2.861 17.983 2x10-16 

s (elevational difference) 3.114 13.422 2x10-16 

s (hours distance) 1.000 5.634 0.018 

s (months distance) 3.434 1.441 0.139 

s (years distance) 1.000 0.906 0.341 

s (sampling intensity distance) 2.026 3.767 0.023 

s (methods distance) 1.000 5.129 0.024 

Bold values indicate statistically significant results (P < 0.05).  
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Supplementary Table 36. The effect of large-scale ecological boundaries on interaction 

rewiring (βOS). Here, we show the results from a Generalized Additive Mixed-effects Model 

(GAMM) using ecoregion and biome distance metrics as predictors and network IDs as random 

effects (one random factor for each of the pairs across which distance is compared) to account 

for the non-independence of distances (see Rewiring analysis section). Note that, contrary to the 

full model (Supplementary Table 35), only categorical variables are included in this model (with 

a fixed effect for each level of the category). The effect of ecoregion boundaries is significant, 

likely because of their collinearity with our other predictor variables. N pairs of networks = 

1,314. 

 

Parametric coefficients Estimate t P 

Intercept 0.579 22.975 2x10-16 

Ecoregion (same) -0.155 -6.756 2.13x10-11 

Biome (same) 0.005 0.202 0.84 

Bold values indicate statistically significant results (P < 0.05).  
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