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 A B S T R A C T

Passive Acoustic Monitoring (PAM), which uses devices like automatic audio recorders, has become a 
fundamental tool in conserving and managing natural ecosystems. However, the large volume of unsupervised 
audio data that PAM generates poses a major challenge for extracting meaningful information. Deep Learning 
techniques, particularly automated species identification models based on computer vision, offer a promising 
solution. BirdNET, a widely used model for bird identification, has shown success in many study systems 
but is limited at local scale due to biases in its training data, which focus on specific locations and target 
sounds rather than entire soundscapes. A key challenge in bird species detection is that many recordings 
either lack target species or contain overlapping vocalizations, complicating automatic identification. To 
overcome these problems, we developed a three-stage pipeline for automatic bird vocalization identification in 
Doñana National Park (SW Spain), a wetland facing significant conservation threats. We deployed AudioMoth 
recorders in three main habitats across nine different locations within Doñana, and the manual annotation 
of 461 min of audio data, resulting in 3749 annotations covering 34 classes. Our working pipeline included, 
first, the development of a Bird Song Detector to isolate bird vocalizations, using spectrograms as graphical 
representations of bird audio data and applying image processing methods. Second, we classified bird species 
training custom classifiers at the local scale with BirdNET’s embeddings. The best-performing detection 
model incorporated synthetic background audios through data augmentation and an environmental sound 
library (ESC-50). Applying the Bird Song Detector before classification improved species identification, as 
all classification models performed better when analyzing only the segments where birds were detected. 
Specifically, the combination of the Bird Song Detector and fine-tuned BirdNET increased weighted precision 
(from 0.18 to 0.37), recall (from 0.21 to 0.30), and F1 score (from 0.17 to 0.28), compared to the baseline 
without the Bird Song Detector. Our approach demonstrated the effectiveness of integrating a Bird Song 
Detector with fine-tuned classification models for bird identification at local soundscapes. These findings 
highlight the need to adapt general-purpose tools for specific ecological challenges, as demonstrated in Doñana. 
Automatically detecting bird species serves for tracking the health status of this threatened ecosystem, given 
the sensitivity of birds to environmental changes, and helps in the design of conservation measures for reducing 
biodiversity loss.
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1. Introduction

Natural environments face significant challenges in terms of con-
servation due to different drivers of global change, such as habitat 
loss, climate change, species invasion or anthropogenic pressure. In 
response to this crisis, biodiversity monitoring and species interaction 
assessments have become essential to understanding environmental 
impacts and developing conservation strategies. Effective biodiversity 
monitoring is fundamental for conservation efforts, as it provides the 
data necessary to make informed decisions. Still, it is challenging to get 
the necessary data at large spatio-temporal scales.

In this regard, identifying and tracking the presence of birds is 
crucial, as birds serve as indicators of ecosystem health (Gregory and 
van Strien, 2010). Although various automatic monitoring technolo-
gies, such as cameras and audio recorders, are already in use, efficiently 
managing and analyzing the large volumes of data generated by these 
devices remains a challenge. An effective technology is Passive Acous-
tic Monitoring (PAM), which uses audio recorders to continuously 
capture sounds of an environment. PAM is particularly valuable for 
monitoring biodiversity, as it can operate in remote and inaccessible 
areas, providing continuous data without disturbing habitat (Sugai 
et al., 2019). Using PAM, the spatiotemporal scale of monitoring can 
be significantly expanded, allowing more comprehensive and detailed 
ecological studies (Gibb et al., 2019).

In recent years, the cost of automatic recording devices has been 
reduced, leading to an increase in the collection of this type of data 
for ecological studies (Farley et al., 2018; Darras et al., 2019; Metcalf 
et al., 2023). Despite their advantages, they generate large amounts of 
unlabeled data, making analysis difficult and limiting their utility for 
decision making (Tuia et al., 2022). The primary objective of any PAM 
project is to address the challenge of efficiently extracting biodiversity 
information from large volumes of audio data. Thanks to this process, 
the identification of bird species is automated, which greatly improves 
data analysis efficiency in the context of environmental monitoring.

Historically, early bird vocalization recognition methods relied on 
basic sound feature analysis, using techniques such as Random Forests 
for classification. These methods focused on extracting specific audio 
features – such as frequency, pitch, or duration – to create a feature 
set that could be used for classification (Keen et al., 2021). Despite 
of being effective to a certain extent, these approaches were limited 
by their reliance on manually crafted features and often struggled with 
complex and overlapping sounds. Such challenges in traditional feature 
engineering approaches are well-documented in foundational works on 
Machine Learning (Hastie et al., 2009; Murphy, 2012), where the need 
for automated, high-level feature extraction was emphasized as a chal-
lenge for accurate classification in complex domains. The recent shift 
towards Deep Learning (Goodfellow et al., 2016), has enabled more 
advanced architectures that autonomously learn rich representations 
from data, addressing many limitations of earlier methods.

In the case of bird vocalization recognition, Deep Learning tech-
niques have represented a revolution for monitoring bird popula-
tions (Xie et al., 2023; Stowell, 2022). One of the most popular models 
of bird vocalization recognition is BirdNET (Kahl et al., 2021), which 
has proved to be successful in many cases (Pérez-Granados, 2023; Wood 
and Kahl, 2024; Schuster et al., 2024). These models were tested in 
environments where the base model was especially well trained, mainly 
in Northern America and central-Northern Europe. This means that 
the model was initially trained on a dataset that closely resembles the 
conditions of the test environment, thereby increasing its predictive 
accuracy. While BirdNET performs well in regions it was trained on, 
its accuracy declines in unfamiliar soundscapes due to local varia-
tions in bird vocalizations, background noise, and overlapping bird 
vocalizations (Beery et al., 2019; Lauha et al., 2022; Pérez-Granados, 
2023). In these cases, False Positives (FPs) often arise from other 
vocalizing animals not being birds, anthropogenic sounds, or weather 
conditions (Stowell et al., 2019; Kahl et al., 2021; Clark et al., 2023).
2 
Foundational models like BirdNET also struggle to recognize species 
they were not trained on. In theory, it is possible to retrain an existing 
model to add missing species, known as fine-tuning (Lalor et al., 2017). 
Alternatives such as Google’s Perch model (Hamer et al., 2023) and 
custom models based on BirdNET with fine-tuning for local conditions 
have been developed (Brunk et al., 2023; Sossover et al., 2024; Ghani 
et al., 2024; Pérez-Granados et al., 2025). These fine-tuned models 
aim to improve accuracy by accounting for the unique characteristics 
of local bird populations (Lauha et al., 2022). However, this task is 
quite challenging as it requires Machine Learning expertise similar 
to having to train models from scratch. While recent studies have 
demonstrated progress in applying Machine Learning to accelerate the 
annotation process in ecoacoustics (Martin et al., 2022; Sethi et al., 
2024), these approaches are still under development and not yet widely 
implemented.

To address these limitations, we have been inspired by methodolo-
gies used in camera trap projects (Beery et al., 2019; Rigoudy et al., 
2023), in which a detector is applied prior to species classification on 
captured images. Similarly, we propose a two-stage pipeline approach 
that uses first a generalizable bird vocalization detector combined later 
with a classifier, improving accuracy and reducing false positives. In 
particular, we have developed a Bird Song Detector based on the 
YOLOv8 model (You Only Look Once v8; Jocher et al., 2023) trained 
with data from our case study in Doñana National Park. Once the audio 
segments containing bird songs have been detected, we applied several 
classifier models, and in all of them, we have proven an improvement 
of the classification when the detector was present (Fig.  1).

The added value of this pipeline lies in its ability to isolate relevant 
segments of audio that contain bird vocalizations before applying a 
more computationally intensive species classifier. This process not only 
reduces the number of non-bird segments incorrectly identified as bird 
vocalizations but also simplifies the fine-tuning of the species classifier, 
as the model is optimized to work with segments that are already 
confirmed to contain bird sounds. By separating the detection and clas-
sification stages, we minimize background noise interference and focus 
the classifier’s resources on the most relevant audio data, leading to 
improved overall system performance. The generalization ability of the 
Bird Song Detector also ensures that it can identify bird vocalizations 
for locally abundant species for which it was not originally trained, 
making this approach robust for real-world applications with diverse 
species compositions.

As a study case, we applied this pipeline to the PAM program devel-
oped by the BIRDeep project at Doñana National Park (SW Spain) (Bird-
eep.org, 2025). This area presents a high conservation concern due to 
the alarming decline of its bird populations over time due to different 
human impacts. Monitoring bird diversity through PAM serves then 
as a proxy for assessing the health status of Doñana’s endangered 
ecosystems.

2. Material and methods

2.1. Preprocess

2.1.1. Field study site and PAM design
Soundscapes were recorded at Doñana National Park (SW Spain). 

This area corresponds to the marshes of the Guadalquivir delta and 
is one of the most important wetlands in Southern Europe, where 
millions of migrating birds stopover and winter every year (Rendón 
et al., 2008; Green et al., 2016). The area has serious conservation 
threats due to water over-exploitation for agriculture and tourism, 
climate and land-use change, and pollution due to a mine spillover in 
1998, among others (Green et al., 2024), which poses serious concerns 
both at the local and European administration levels. These threats 
are particularly affecting bird populations, which are in decline over 
the last years (Camacho et al., 2022; Campo-Celada et al., 2022). 
Doñana includes four major habitats, which are differentiated by their 
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Fig. 1. Pipeline used for the development of our Bird Song Detector. The process was divided into three main stages: (1) Preprocess: This stage involved deploying automatic 
recording devices (AudioMoths) in natural habitats of Doñana to collect audio data, as a part of the BIRDeep project. Audio recordings were then annotated by experts to identify 
bird vocalizations, followed by splitting the dataset into training, validation, and test sets. (2) Bird Song Detector : We trained the Bird Song Detector using the annotated dataset. 
Our Detector was derived from YOLOv8, which is a state-of-the-art model suitable for detecting objects in images. The Bird Song Detector was developed to identify segments 
of the audio recordings that contained the sonogram of a bird vocalization (only the presence/absence of any bird species). After training, the Detector model was applied to 
the test dataset, producing segments that contained potential bird vocalizations. (3) Classifier : The final stage consisted first of a fine-tuning of BirdNET model, using the audio 
from Doñana annotated by experts. Second, this fine-tuned BirdNET model was then used to extract feature embeddings and train other Machine Learning algorithms. Finally 
those algorithms were validated and tested with the segments that were previously identified by the Bird Song Detector as containing bird songs. After applying this pipeline, 
we were able to greatly improve the classification of bird species from Doñana present in each segment. Classifications using the detector first vs. those only using BirdNET, the 
state-of-the-art approach, improved: True Positives were increased, and False Negatives were reduced.
flooding regime and vegetation: coastal dunes, scrublands, marshlands, 
and the ecotone or transition among them. The deployment design of 
the BIRDeep project included nine AudioMoth recorders (Hill et al., 
2019) that were distributed among three of these habitats: two in the 
marshland, three in the ecotone and four in the scrubland, differen-
tiating high and low scrubland (see Fig.  2). AudioMoths are low-cost 
automatic audio recording devices with open-source hardware (Hill 
et al., 2018). They continuously recorded 1 min of audio every 10 min. 
Configuration parameters of deployed AudioMoth included a sampling 
rate of 32 kHz, a medium gain, and a filter band focused on bird 
frequencies (0.6–16.0 kHz).

2.1.2. Acoustic data annotation by experts
Although devices have been continuously recording since their de-

ployment, for this study, we selected a manually annotated subset 
spanning from March to October 2023 for logistic reasons. From the 
total of audios, we selected 461 min. We tried to balance representation 
across sites and habitats while keeping the annotation effort manage-
able. We also prioritized periods of high bird activity, primarily the 
morning chorus, to maximize the number of detectable vocalizations 
in the annotations (Robbins, 1981).

Annotation was carried out manually by two co-authors with or-
nithological expertise (ESG and GB). The process is labor-intensive 
and time-consuming, requiring simultaneous listening to the audio and 
visualization of the spectrogram, which displays how the sound’s fre-
quency content evolves over time. Annotating these 461 min required 
approximately 13,445 min (about 224 h) of labor effort, with a median 
annotation time of 18 min and an average of 29.4 min per 1 min file. 
The experts used Audacity software (Audacity-Team, 2023), which fa-
cilitates species identification using auditory signals and visual patterns 
based on spectrograms. These annotations were then exported from the 
Audacity format and converted to CSV files. Each annotation consisted 
of bounding boxes with the minimum and maximum frequency, as well 
as the start and end time of each bird vocalization in the spectrogram.
3 
When ornithological experts faced uncertainties for labeling species 
in the audios, they referred to field censuses done in the same sam-
pling stations to ensure the accuracy of their annotations. These field 
censuses were conducted periodically (43 censuses from March 2023 
until February 2024) and provided diversity data that was used to 
cross-validate the audio labels. By cross-validating the audio data with 
field observations, the annotators could confirm species presence and 
improve the reliability of their annotations at the same time that it 
helped to narrow down the number of potential species, making it 
easier to identify the species present in the recordings.

The number of annotations was highly unbalanced across recorders, 
whereas the number of annotated files was more similar, except for
Juncabalejo site (Fig.  3). This was the most isolated site in the marsh-
land and we found logistic problems to access the recorders to change 
batteries and SIM cards during the flooding time. Some recorders 
had a high number of annotations because their recordings were rich 
in bird vocalizations, likely reflecting variations in bird occurrence 
and activity, environmental conditions, and recording quality across 
sampling sites.

After standardizing the annotations, a total of 3749 annotations 
were created, spanning 34 different classes, as shown in Fig.  4. In 
addition to the species-specific classes, we have distinguished other 
general classes: Sturnus sp., Passer sp., and Lanius sp., which were 
used when the species was unknown but the genus could be identified;
Alaudidae, Fringillidae, and Sylviidae, used when only the bird family 
could be determined; a general Bird class for cases where the sound was 
identified as avian but further classification was not possible. Finally, 
there was a No Bird class for recordings that contain soundscapes 
without bird songs or any non-avian biotic sound. For the Bird Song De-
tector, which only distinguishes between two classes Bird and No bird, 
all bird-related classifications were re-labeled as Bird. For the species 
classifiers, to avoid confusion, general classes that overlapped with 
specific species (e.g., Alaudidae, Bird and Fringillidae) were removed.
Upupa epops was also removed, due to split considerations, explained in 
next Section 2.1.3. These classes, represented in orange in Fig.  4, were 
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Fig. 2. Spatial distribution of the nine sampling sites where PAM devices (AudioMoths) were deployed in Doñana National Park. The sampling design included the three main 
habitats of Doñana: marshland, scrubland (high or low), and ecotone. Each habitat type is distinguished by a different color in the map. Names of study sites belong to the local 
denomination by the ICTS-Doñana (ICTS Doñana, 2025) permanent infrastructure where the devices were installed.
Fig. 3. Number of annotations and audio files across sampling sites (see Fig.  2 for reference of site names), illustrating the varying levels of annotation effort across recorders.
excluded to ensure a clear distinction between general and specific 
labels.

It is important to note that the dataset (Márquez-Rodríguez et al., 
2025) exhibits class imbalance, with varying frequencies of annotations 
across different classes. Additionally, the dataset contains inherent 
challenges related to environmental noise (see Section 3.1).

2.1.3. Dataset split
The dataset (Márquez-Rodríguez et al., 2025) was divided into train-

ing, validation, and test sets, with the aim of achieving an 80–10–10 
proportion per species (Hardy, 2010). However, maintaining indepen-
dence and avoiding correlation among subsets to avoid overestimation 
during model evaluation was challenging (Kattenborn et al., 2022), 
as some audios were multilabeled and contained vocalizations from 
more than one species (see Fig.  3). This made it difficult to strictly 
adhere to the desired 80–10–10 ratio. To mitigate these issues, we 
prioritized ensuring that no audio file appeared in more than one 
subset, even if it contained multiple species, to maintain independence. 
In the particular case of Upupa epops, all vocalizations of this species 
were contained within a single audio file assigned to the validation 
4 
set, which also included annotations of other species. Consequently,
Upupa epops was placed exclusively in the validation set and excluded 
from both training and testing tests to prevent bias during detector 
evaluation. This species was not included in the classifier due to the 
lack of additional audio recordings (Fig.  4). The final distribution of 
sets reflects these adjustments that balance classes as much as possible 
but also consider independence constraints (Fig.  5).

2.1.4. Data preparation
The audio data were transformed into spectrograms, which are 

graphical representations that display how the signal’s energy is dis-
tributed across different frequencies over time. This transformation 
makes the application of Deep Learning models based on image pro-
cessing techniques, i.e. Convolutional Neural Networks, suitable for au-
dios (Carvalho and Gomes, 2023). A log-scaled spectrogram is a variant 
of a spectrogram where the frequency axis is represented logarithmi-
cally, emphasizing lower frequencies while preserving the visibility of 
higher frequencies. This scaling is particularly suitable for analyzing 
bird vocalizations, as it provides greater resolution in the lower fre-
quency range where many bird songs and calls are concentrated, while 
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Fig. 4. Number of annotations of the 34 annotated classes in the dataset. All annotated classes, including genus- and family-level labels (e.g., Sturnus sp., Fringillidae) and the 
general Bird label, were used to train the Bird Song Detector by relabeling them under a unified Bird class. For species classification, only the 29 classes shown in blue were 
retained. The orange bars represent general or ambiguous classes (e.g., family-level or uncertain identifications) that were excluded from classifier training to ensure specificity.
Fig. 5. Distribution of the number of annotations per class across training (blue), validation (orange), and test (green) sets. 
still capturing harmonics and other features that extend into higher 
frequencies (Wyse, 2017).

Spectrograms were generated using the librosa Python library 
(McFee et al., 2015), a popular toolkit for audio analysis. The Short-
Time Fourier Transform (STFT) was applied to the audio signal to 
compute the spectrogram, and the amplitude of the resulting frequency 
bins was converted to a decibel (dB) scale. The frequency axis was dis-
played on a logarithmic scale. The frequency range of the spectrograms 
was set to a minimum of 1 Hz and a maximum of 16,000 Hz, which 
encompasses the typical range of bird vocalizations while excluding 
inaudible frequencies or irrelevant noise. The dimensions of the output 
spectrogram images were 930 × 462 pixels. Although our annotations 
originally included frequency windows for each vocalization, to sim-
plify detection given the limited data, bounding boxes spanned the 
entire frequency 𝑦-axis. This choice prioritizes the temporal localization 
of bird vocalizations, which are the primary signal for subsequent 
classification (see Fig.  6 as an example).

To enhance the dataset and improve the robustness of downstream 
models, additional preprocessing steps were applied. Specifically, syn-
thetic audio samples were generated by adding random noise (using
5 
NumPy Python library Harris et al., 2020), to simulate background 
interference and slightly adjust the intensity of the signals. These 
modifications aimed to increase the number of training examples that 
contained only background noise, ensuring a more diverse dataset for 
both detection and classification tasks.

The annotations were further processed to adopt the format required 
by the YOLOv8-based object detection model (Jocher et al., 2023). A 
detailed explanation of the mathematical conversion from YOLOv8’s 
normalized coordinates to temporal annotations in seconds is presented 
in Appendix A.

2.2. Bird Song Detector model development

We chose a pre-trained YOLOv8 model to develop our Bird Song 
Detector because it is the state-of-the-art for real-time object detection 
models. YOLOv8’s architecture consists of multiple convolutional layers 
followed by fully connected layers that predict bounding boxes, object-
ness scores, and class probabilities for detected objects. YOLOv8 divides 
each input image into a grid and predicts bounding boxes for the 
presence of these image events, along with a confidence score for each 
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Fig. 6. An example of a log-scaled spectrogram, in gray scale for clearer visualization, from the Doñana dataset with annotations (i.e., blue and orange rectangles) for temporal 
windows and the complete frequency spectrum for the annotated vocalizations of two bird species.
prediction. In our case study, the input images were spectrograms, and 
the relevant events were bird vocalizations represented as sonograms in 
the images. Given the nature of our local audio data, which contains a 
mix of bird sounds and background noise, we chose YOLOv8s (small 
version of YOLOv8) for distinguishing relevant events. This reduced 
version was more effective in maintaining high detection accuracy 
while minimizing computational load at initial experiments (Pasupa 
and Sunhem, 2016).

The training of the Bird Song Detector model was done using 
the previously described spectrograms that were annotated with the 
bird vocalizations from Doñana. We performed data augmentation 
techniques to improve the robustness of the model: YOLO’s internal 
augmentation methods, which involve modifications such as changes 
in HSV (hue, saturation, and value), temporal translations (shifting 
the audio in time), and mixup (Zhang et al., 2017; Tokozume et al., 
2017), a technique widely used in audio data augmentation. The 
dataset was also supplemented with additional samples from an exter-
nal dataset (Piczak, 2015-10-13) to further enrich model training (see 
Section 3.1 below).

2.2.1. Evaluation metrics for detections
Currently, there are no widely available, general-purpose bird vocal-

ization detectors trained for global-scale datasets. As a result, a direct 
comparison of our Bird Song Detector with another state-of-the-art bird 
vocalization detector is not possible. Existing tools like BirdNET, while 
primarily designed for species classification, also includes background 
training data. Therefore, BirdNET can serve as a baseline detector 
for identifying audio segments containing bird vocalizations and we 
compared it with the Bird Song Detector developed in our study. More 
information about BirdNET is provided in Section 2.3.1.

The performance of both detectors used (Bird Song Detector and 
BirdNET) was assessed using standard metrics for object detection and 
classification tasks, including TPs, FPs, FNs, Precision, Recall, F1-score, 
and Accuracy. The detection metrics were calculated as follows:

Precision = TP

TP + FP

6 
Recall = TP
TP + FN

F1-Score = 2 ⋅ Precision ⋅ Recall
Precision + Recall

Accuracy = TP + TN
TP + FP + FN + TN

Additionally, we applied an Intersection over Union (IoU) crite-
rion to ensure that detected segments overlapped with Ground Truth 
annotations, making the evaluation more consistent across different de-
tection approaches. A prediction is considered correct if its overlap with 
a Ground Truth annotation meets the required threshold, quantified 
using the IoU metric. IoU measures the intersection between predicted 
and actual vocalization segments relative to their total duration. It is 
defined as:

IoU =
Intersection (Overlap Duration)

Union (Total Duration of Prediction and Ground Truth)

2.2.1.1. Bird song detector. For this study, a minimum IoU threshold of 
0.1 was used to determine matches. Predictions with IoU values below 
this threshold were classified as FP, and Ground Truth annotations 
without matching predictions were classified as FN. Temporal segments 
from the Bird Song Detector were further filtered based on a confidence 
score threshold to exclude low-confidence predictions.

2.2.1.2. BirdNET as a bird vocalization detector. BirdNET processes au-
dio recordings by segmenting them into fixed 3-s intervals and clas-
sifying each segment (see Section 2.3.1). In this study, we assessed 
BirdNET’s ability to function as a binary bird presence detector, inde-
pendent of species classification. A detection was considered correct 
if any part of a GT annotation overlapped with a BirdNET segment, 
even if the GT annotation spanned multiple segments. This approach 
accounts for cases where annotated bird vocalizations extend across 
adjacent 3-s intervals.

To ensure a fair comparison with the Bird Song Detector, we ap-
plied an IoU-based evaluation. Because BirdNET operates on fixed 3-s 
windows, its segments do not always align precisely with ground truth 
annotations. Therefore, instead of a strict IoU match, we required a 
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minimum overlap between GT annotations and predicted segments, 
similar to the IoU threshold used for the Bird Song Detector.

BirdNET assigns a confidence score to each prediction, reflecting the 
likelihood that a species vocalization is present. To ensure a species-
agnostic evaluation, we applied a uniform confidence threshold across 
all predictions rather than optimizing it for individual taxa. The se-
lected confidence threshold determines how conservatively BirdNET 
predicts the presence of a bird vocalization:

• Confidence Score = 0.1 (Default Value): This is the default Bird-
NET threshold. Prior studies have shown that using this threshold 
in real-world PAM scenarios leads to an increase in FPs, as 
BirdNET assigns low-confidence scores to background noise or 
ambiguous detections (Pérez-Granados, 2023). However, lower-
ing the confidence threshold improves recall by reducing missed 
detections.

• Confidence Score = 0.6 (Adjusted Threshold): Higher con-
fidence thresholds have been recommended for improving the 
reliability of BirdNET predictions in complex acoustic environ-
ments. Funosas et al. (2024) found that BirdNET predictions 
become significantly more reliable when using thresholds above 
0.7. We adopted a slightly lower threshold of 0.6 to balance 
precision and recall, reducing FPs while still capturing a sufficient 
number of detections.

To systematically evaluate BirdNET as a detector, we applied both 
0.1 and 0.6 thresholds uniformly to all species, treating BirdNET’s pre-
dictions as binary vocalization detections rather than species-specific 
classifications. This ensures that confidence score variations across 
species do not influence the detection performance comparison.

Different evaluations were carried out with different species lists. 
First, we used a full list of species from Doñana that included 412 
classes, as provided by BirdNET, based on the study area coordinates. 
We then later reduced this list by selecting the most common species 
in the area and removing sporadic observations, using references from 
existing literature (García et al., 2000; Garrido et al., 2004) and our 
own field observations from expert censuses. This resulted in a shorter 
list of 337 species, which we have called the ‘‘expert list’’.

To comprehensively assess BirdNET’s performance under different 
conditions, we tested the following four configurations:

• BirdNET without fine-tuning at a confidence threshold of 0.6, 
using the default species list for Doñana National Park coordi-
nates.

• BirdNET without fine-tuning at a confidence threshold of 0.6, 
using the expert species list for Doñana National Park.

• BirdNET fine-tuned at a confidence threshold of 0.6, using 
classifier species classes.

• BirdNET fine-tuned with a lower confidence threshold of 0.1, 
to assess detection sensitivity.

2.2.1.3. Comparison of methods. The percentage improvements in TPs, 
FNs, FPs were calculated based on changes observed between both 
methods, using the following general formula:
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐶ℎ𝑎𝑛𝑔𝑒 =

(𝑁𝑒𝑤𝑉 𝑎𝑙𝑢𝑒 − 𝑂𝑙𝑑𝑉 𝑎𝑙𝑢𝑒
𝑂𝑙𝑑𝑉 𝑎𝑙𝑢𝑒

)

× 100

where 𝑁𝑒𝑤𝑉 𝑎𝑙𝑢𝑒 refers to the value obtained from our Bird Song 
Detector and 𝑂𝑙𝑑𝑉 𝑎𝑙𝑢𝑒 refers to the value obtained from BirdNET with 
the specific confidence score threshold.

An increase in TPs indicates an improvement in detection accuracy, 
as more bird vocalizations are correctly identified. A decrease in FNs 
is also a sign of improved performance, as the system misses fewer 
bird vocalizations. Conversely, a decrease in FPs represents a reduction 
in erroneous detections of non-bird sounds. For all metrics, positive 
percentage changes in TPs and negative changes in FN and FP signify 
improvements, while negative changes in TPs or positive changes in 
FNs and FPs indicate a decline in performance.

When evaluating percentage changes in the results, it is important 
to consider them in absolute terms. A large percentage increase or 
7 
decrease might appear significant at first glance, but its actual impact 
depends on the scale of the values involved. For instance, changes 
from small baseline values can result in high percentage variations, 
even if the absolute difference is relatively minor. Conversely, changes 
in metrics with larger absolute values might show smaller percentage 
shifts but represent a more substantial impact on overall performance. 
Therefore, it is crucial to interpret these percentages within the context 
of the absolute figures to avoid misinterpreting the true extent of the 
changes.

2.3. Bird-song classifier model development

2.3.1. BirdNET
As the third step in our pipeline (Fig.  1), we fine-tuned BirdNET v2.4 

to create a feature extractor specifically adapted to the ecological con-
text of Doñana. BirdNET is a Deep Learning model designed to classify 
bird species using audio inputs. It segments audio recordings into 3-s 
clips, it transforms the audio into spectrogram images, and it performs 
the classification into a bird species using a deep Convolutional Neural 
Network (Kahl et al., 2021). BirdNET v2.4 uses an EfficientNetB0-like 
backbone with a final embedding size of 1024 for feature extraction 
and classification. It covers frequencies from 0 Hz to 15 kHz, and it 
is trained for 6522 classes (including 10 non-event classes), making it 
suitable for the identification of diverse bird species all over the world. 
Non-event classes refer to categories that represent sounds or signals 
that are not related to bird vocalizations, such as background noise, 
human-made sounds, or other environmental noises.

The fine-tuning was performed in the BirdNET v2.4 GUI v1.5.1 
(Kahl, 2021), with the default training parameters. The training mode 
was set to replace, ensuring that the original classification layer 
was overwritten and only the newly trained classes remained. To ad-
dress class imbalance, repeat upsampling was applied, with minority 
classes resampled at 10% of the majority class frequency. This fine-
tuning step adapted BirdNET to the bird species and soundscapes of 
Doñana, intending to reduce bias and improve model performance for 
audio recordings from the region.

Once fine-tuned, the model was used to extract feature
embeddings—1024-dimensional vector representations capturing es-
sential audio characteristics. These embeddings served as input features 
for subsequent classifiers.

The training data for fine-tuning were derived directly from the 
expert annotations (Márquez-Rodríguez et al., 2025). Each annotated 
time window was segmented and organized into folders corresponding 
to their respective annotated classes, adhering to BirdNET’s required 
training input structure.

2.3.2. Other classifiers
In addition to the fine-tuned BirdNET model, we explored other 

classification approaches: a Machine Learning classifier, and two Deep 
Learning models.

For the Machine Learning approach, we used Random Forest, a 
well-established method in bioacoustics for species classification due 
to its ability to handle structured data efficiently and provide stable 
predictions (Breiman, 2001). The model was trained using BirdNET em-
beddings (1024-dimensional feature vectors) extracted from the same 
dataset used for fine-tuning.

The Random Forest model was implemented using the Random-
ForestClassifier from the scikit-learn library (Pedregosa 
et al., 2011) of Python. The optimal configuration included a maximum 
depth of 50, with a minimum of 2 samples per leaf and 10 samples per 
split.

For Deep Learning models, we trained ResNet50 and MobileNetV2 
using the Keras Python library (Chollet et al., 2015), initializing both 
with pre-trained ImageNet weights. The original classification layer was 
removed, and all layers were initially frozen. A new classification head 
was added, consisting of a Global Average Pooling layer, followed by a 
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256-unit dense layer with ReLU activation and a final softmax layer for 
classification. The model was first trained with only the newly added 
layers, keeping the pre-trained base frozen. After this initial phase, the 
entire model was unfrozen for a final fine-tuning step across all layers. 
MobileNetV2 was selected due to its reduced dimensionality, which 
helps to prevent overfitting, especially given the relatively small dataset 
size, while also reducing training time and computational require-
ments. Both deep learning models were trained using 3-s spectrograms 
generated from the segments used for the fine-tuned BirdNET.

During evaluation, the models were tested using both full 1 min 
audio files (segmented into 3-s windows) and shorter audio segments 
identified by the Bird Song Detector. When these detected segments 
were shorter than the required 3-s input length, they were padded with 
zeros — representing silence — to match the model’s input size.

We compared these four classifiers (fine-tuned BirdNET, Random 
Forest, and two Deep Learning models) with and without previously 
using the Bird Song Detector. This allowed us to evaluate how the Bird 
Song Detector improved bird classification in different approaches.

2.3.3. Evaluation metrics for classifiers
All BirdNET-based classifiers were evaluated using a fixed confi-

dence score threshold of 0.1, both with and without the Bird Song De-
tector. If BirdNET did not assign any species a confidence score above 
this threshold, the segment was classified as background. However, for 
other classifiers trained specifically for this study (e.g., Random Forest, 
ResNet50, MobileNetV2), a separate Background class was included in 
the model itself. Since these classifiers explicitly learned to distinguish 
bird vocalizations from background noise, no confidence threshold 
was applied, and the species classification with the highest confidence 
score was selected for each segment, whether it was a bird species or 
background noise. This approach ensured that BirdNET adhered to a 
stricter filtering process, while other models relied on their learned 
classification structure.

The classification performance of the models was evaluated using 
standard metrics from the scikit-learn Python library (Pedregosa 
et al., 2011), including the confusion matrix, accuracy, precision, re-
call, and F1-score, along with custom indices designed to assess the 
classifier’s ability to estimate the total number of bird vocalizations.

Beyond standard classification metrics, we introduce the Idx Pred/
Ann metric to further analyze model behavior. This metric helps eval-
uate not only classification accuracy but also the ability of models 
to filter additional false positives, providing insight into whether the 
classifier tends to over-predict or under-predict species occurrences:

• Number of Predictions: The total number of predictions made 
by the classifier, regardless of their correctness.

• Idx Pred/Ann: Index of Predictions per Annotation. This in-
dex quantifies the degree to which the classifier overestimates 
(Idx Pred/Ann > 1) or underestimates (Idx Pred/Ann < 1) the 
number of bird vocalizations in the test set. A value close to 1 
indicates that the classifier predicts a number of vocalizations 
similar to the number of annotated ground truth segments, while 
deviations highlight either an excessive or insufficient number of 
predictions. It evaluates the capability of detection and filtering 
additional false positives.

3. Experiments

3.1. Bird Song Detector training

To select the Bird Song Detector, multiple YOLOv8 models with 
different configurations were trained, and their performance was evalu-
ated using the mean Average Precision (mAP) metric at an Intersection 
over Union (IoU) threshold of 50% (mAP50) (Padilla et al., 2021). 
Initial experiments, represented by the purple lines in Supplementary 
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Figure B.1 (Base, Hyperparameter Exploration V1, Hyperparameter Explo-
ration V2, AugmentedBG V1 and AugmentedBG V2), showed suboptimal 
performance, particularly due to a high number of FPs (Table B.1).

Given the complexity and small size of the dataset (Márquez-
Rodríguez et al., 2025), the bounding boxes, which were initially 
designed to delimit both the frequency spectrum and the time window, 
were simplified (represented by the light orange line, FullFrequencies, 
in Figure B.1). This approach aimed to reduce the complexity of the 
task for the model, given the limited amount of data available.

To address the issue of the FPs, the ESC-50 dataset (Piczak, 2015-
10-13), which is a large collection of 50 environmental sound classes, 
was introduced as background noise (negative samples). To prevent 
confusion, bird-related classes were removed only from ESC-50, but 
not from our primary dataset. When the dataset was fully included, the 
model primarily learned to recognize background sounds and failed to 
detect bird songs effectively (green line, AllESC50, in Figure B.1).

Subsequently, the ESC-50 dataset was reduced to comprise only 
25% of the total training data. This adjustment led to significant im-
provements in the model’s performance (dark orange line, Best Model, 
in Figure B.1). This balanced approach allowed the model to better 
differentiate between bird songs and background noises, improving 
detection accuracy while minimizing FPs.

The various model configurations employed during the experimen-
tation are summarized in Table B.1, which also presents the perfor-
mance metrics for each configuration. The Best Model, which employed 
synthetic background augmentation of noise and intensity changes 
and a reduced ESC50 dataset, achieved high mAP50 scores (0.29), 
along with balanced precision and recall. Other configurations, such as
AllESC50, displayed lower performance metrics. On the other hand, the
Full Frequencies model without the ESC50 dataset had the best perfor-
mance during training, with an mAP50 score of 0.305. This highlights 
the importance of specific augmentation strategies and dataset choices 
in optimizing detection accuracy.

3.2. Selection of confidence score threshold for the bird song detector

To evaluate the confidence scores generated by the Bird Song Detec-
tor, we transformed confidence scores resulting from the output of the 
model into logit scores. This transformation allowed us to convert unit-
less confidence scores into a probability of detection, using a logistic 
regression (Wood and Kahl, 2024).

By converting the confidence scores into logit scores, we were 
able to assess the model’s performance more accurately across various 
probability thresholds (Padilla et al., 2021; Wood and Kahl, 2024). 
This transformation helped identify the point at which the model’s 
predictions were most reliable, ensuring that the selected threshold 
maximized True Positives while maintaining an acceptable level of 
False Positives. Through this method, we were able to ensure that the 
confidence scores reflected the actual likelihood of correct predictions, 
improving the interpretability and robustness of the model’s output.

The conversion from confidence scores to logit scores is based on 
the logistic function:

logit(𝑝) = log
(

𝑝
1 − 𝑝

)

where 𝑝 represents the confidence score of the detector’s prediction. 
This transformation helps to interpret the confidence scores proba-
bilistically, providing a more nuanced understanding of the detector’s 
performance characteristics.

We evaluated the Bird Song Detector using different probability 
thresholds (40%, 60%, 80%, and 95%) to find the optimal balance 
between maximizing True Positive (TP) and minimizing False Negatives 
(FN; see Table  1 and Fig.  7). This optimization process involved analyz-
ing the trade-off between increasing TP detection (i.e., capturing more 
bird vocalizations) and keeping errors as low as possible due to FPs or 
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Table 1
Comparison of different probability thresholds for detection with their respective logit 
scores, confidence scores, and TP losses.
 Probability threshold Logit score Confidence score TP loss (%) 
 40% −2.75 0.06 0.00  
 60% −1.78 0.14 22.08  
 80% −0.58 0.36 74.35  
 95% 1.30 0.79 99.03  

Fig. 7. Logistic regression model with a 60% probability threshold for accurate 
predictions. Each black dot (with some transparency to allow overlapping) represents 
a detection made by the Bird Song Detector. The confidence score of each detection 
is transformed into a logit score and plotted along the 𝑋-axis. A 𝑌 -axis value of 0 
indicates an incorrect detection (i.e., it does not match an actual bird vocalization 
according to the ground truth). Conversely, a 𝑌 -axis value of 1 indicates that the 
detection was correct, based on the ground truth annotations provided by experts. The 
blue line represents the logistic regression model fitted to these data points. The shaded 
area surrounding the blue line represents the 90% confidence interval (CI) for the 
model’s predictions, calculated with a bootstrapping method. The orange lines represent 
the intersection of the selected threshold (60%) with the blue logistic regression line, 
showing the corresponding logit score, which is approximately −1.78 (back-transformed 
into a confidence score of 0.14).

FNs. Higher probability thresholds tend to reduce the number of de-
tections, including fewer FPs and TPs. After evaluation, we determined 
that the 60% threshold provided the best balance: it minimized the loss 
of TPs while keeping the FN rate at an acceptable level (see Fig.  7). The 
selected threshold (60%) corresponds to a logit score of −1.78. When 
transformed back into a confidence score, this results in a threshold of 
0.14.

In practical terms, applying a confidence score threshold of 0.14 
to our Bird Song Detector ensures that for any given prediction, the 
probability of it being correct is at least 60%, regardless of the original 
confidence score provided by the model.

Lower thresholds, such as 40%, result in a 0% loss of TPs but 
occur before the logistic regression model’s effects begin to improve 
performance significantly (logit = −2.75, confidence = 0.06; Table 
1). At this threshold, the model fails to utilize the logistic regression 
adjustments effectively, as evidenced by the extremely low confidence 
score.

On the other hand, higher thresholds, like 80% or 95%, lead to ex-
cessive losses of TPs (74.35% and 99.03%, respectively). These thresh-
olds result in an impractical trade-off, where the reduction in FPs comes 
at the cost of almost complete loss of the TPs (which need to have a 
high probability threshold to be retained), significantly degrading the 
detector’s performance.

In this case and for our case study, the 60% threshold is high enough 
to ensure that the logistic regression model’s adjustments are actively 
enhancing detection performance, while also preserving a manageable 
amount of TPs. This threshold ensures that the model remains both 
reliable and practical for detecting bird songs, thereby offering an op-
timal balance between confidence and detection accuracy. For further 
experiments and results in the Bird Song Detector, a confidence score 
threshold of 0.15 will be used.
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3.3. Bird Song Detector selection

The performance of the top models (Best Model and Full Frequen-
cies) was compared using the same validation dataset. As explained 
above, we set confidence scores to ensure a 60% probability of correct 
predictions: 0.14 for the Best Model and 0.06 for the Full Frequencies
model. Although both models display comparable performance across 
certain metrics, the Best Model outperforms Full Frequencies, notably 
in the number of predictions (315 vs. 59; Fig.  8). At a 60% of cor-
rect prediction rate, the Best Model not only generates significantly 
more predictions, but also maintains competitive performance metrics, 
including accuracy and F1-Score.

In the case of the Full Frequencies model, although higher precision 
is achieved, the limited number of predictions raises concerns about 
its robustness and generalizability. In contrast, the Best Model, with 
a greater number of predictions and balanced performance metrics, 
stands out as the more reliable choice for our ecological monitoring 
objectives, given its consistent performance across metrics.

The Best Model also demonstrates a better fit to the validation 
data and a lower prediction uncertainty, suggesting a stronger ability 
to generalize across the dataset and provide more reliable detections 
than the Full Frequencies model. This enhanced performance can be 
attributed to the model’s specific augmentation strategy, which in-
cludes synthetic background noise, intensity variations, and the use 
of a reduced ESC50 dataset. These augmentation techniques likely 
contribute to the model’s ability to make more confident predictions 
and improve overall reliability.

4. Results

4.1. Bird Song Detector performance

The Bird Song Detector built with the Best Model was evaluated on 
the test dataset, and its binary confusion matrix for these detections is 
shown in Fig.  9. This matrix shows that the detector was effective for 
identifying temporal windows containing bird vocalizations and had a 
relatively low proportion of FNs and FPs.

4.2. Bird Song Detector vs. BirdNET as a bird vocalization detector

The Bird Song Detector was compared against BirdNET, as a bird 
vocalization detector, in various configurations. Table  2 presents the 
confusion matrices for these configurations.

4.3. Bird species classification

To assess the impact of the Bird Song Detector on species classi-
fication, different classifiers were tested on both raw audio and pre-
segmented audio from the detector. Table  3 summarizes the results.

Among the classifiers tested, fine-tuned BirdNET combined with the 
Bird Song Detector demonstrated the highest performance, achieving 
an accuracy of 0.30, a weighted F1-score of 0.28, and the best align-
ment between predictions and ground truth annotations (Idx Pred/Ann 
= 0.9183). Given its superior performance, a more detailed analysis of 
this classifier is presented, focusing on per-species performance metrics.

Fig.  10 provides the species-specific normalized confusion matrix, 
offering a visual representation of misclassifications and correct predic-
tions. Darker cells along the diagonal indicate TPs, while off-diagonal 
cells correspond to FPs and FNs, illustrating common misclassification 
patterns.

Additionally, to better understand the classification behavior, Table 
B.2 presents the classification report for the Bird Song Detector and 
fine-tuned BirdNET, showing precision, recall, and F1-score for each 
species. This allows for an assessment of which species were more 
accurately identified and which ones posed challenges for classification.
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Table 2
Comparison of confusion matrices for different models used as bird vocalization detectors, including various configurations of BirdNET (fine-tuned and non fine-tuned, with 
different confidence thresholds and species lists) and Bird Song Detector model. All models are evaluated solely in terms of detection performance, that is, their ability to 
distinguish between segments with bird vocalizations and background noise, independently of species classification. The table shows the number of TPs, FPs and FNs for each 
configuration. The last two rows highlight relative changes in performance when comparing the Bird Song Detector to fine-tuned BirdNET at confidence thresholds of 0.6 (blue) 
and 0.1 (orange). Bold values indicate improvements made by Bird Song Detector.

Model Fine-tuned Confidence score
threshold

Species
list

Prediction: Bird Prediction: Background
GT: Bird
(TP)

GT: 
Background

(FP)

GT: Bird
(FN)

GT: 
Background

(TN)
BirdNET 7 0.6 Full list 39 0 158 –
BirdNET 7 0.6 Expert list 48 1 179 –
BirdNET 3 0.6 Classifier classes 98 6 211 –
BirdNET 3 0.1 Classifier classes 245 63 135 –

Bird Song Detector – 0.15 – 196 9 70 –
Comparison with 0.6 confidence threshold +100% +50% −67% –
Comparison with 0.1 confidence threshold −20% −86% −48% –
Table 3
Comparison of classifier performance with and without the Bird Song Detector. Shown metrics are Accuracy (Acc.), macro 
and weighted average (Avg) precision (Prec.), recall (Rec.), F1-score (F1), and an index calculated based on the number of 
predictions relative to the total number of annotations (Idx Pred/Ann). Shaded rows indicate improvement when using Bird 
Song Detector. All metrics are better at higher values, except for Idx Pred/Ann, which is optimal when closer to 1.
Classifier Bird Song Detector Acc. Macro Avg Weighted Avg Idx Pred/Ann

Prec. Rec. F1 Prec. Rec. F1

BirdNET fine-tuned 7 0.21 0.12 0.14 0.11 0.18 0.21 0.17 1.8046
BirdNET fine-tuned 3 0.30 0.21 0.14 0.13 0.37 0.30 0.28 0.9183
Random Forest 7 0.19 0.10 0.10 0.08 0.19 0.19 0.15 0.9059
Random Forest 3 0.29 0.11 0.12 0.10 0.24 0.29 0.23 0.5435
ResNet50 7 0.02 0.00 0.03 0.00 0.00 0.02 0.00 3.2682
ResNet50 3 0.08 0.01 0.05 0.01 0.01 0.08 0.02 0.6306
MobileNetV2 7 0.02 0.01 0.04 0.01 0.01 0.02 0.01 3.2682
MobileNetV2 3 0.08 0.01 0.04 0.01 0.02 0.08 0.02 0.6306
5. Discussion

This study presents the methodological development and evaluation 
of a two-stage pipeline designed to enhance bird species identification 
in PAM. The results demonstrate that incorporating a Bird Song De-
tector significantly enhances bird identification in audio recordings. 
By segmenting recordings and isolating relevant audio regions, the 
detector effectively reduces FNs while keeping FPs to a minimum. 
This pre-filtering process ensures that classifiers operate on cleaner, 
more focused segments, reducing the risk of misclassification due to 
background noise or overlapping sounds.
Evaluation of Detectors.  Most publicly available ecoacoustic algo-
rithms (Kahl, 2021; Google Research, 2024) focus primarily on bird 
species classification rather than the detection of vocalizations. How-
ever, general species classification models often struggle in PAM pro-
grams deployed in real-world scenarios, as it is already a known case 
for BirdNET (Pérez-Granados, 2023; Funosas et al., 2024). Our results 
confirm that relying solely on BirdNET for binary bird detection leads 
to high FN and FP rates, which limits its ability to detect bird presence.

Selecting an appropriate confidence threshold for the Bird Song 
Detector is key to balance recall and precision. As shown, increasing 
the threshold reduces FPs but also results in substantial TP losses—
up to 99% at the highest setting. We found that a threshold of 0.15 
offered the best compromise, maintaining reasonable recall while lim-
iting the number of non-informative detections processed downstream. 
This balance is critical in real-world deployments, where excessively 
low thresholds would flood subsequent stages with noise, while overly 
conservative thresholds risk missing important vocalizations. The cho-
sen threshold of 0.15 minimizes FN rates without overwhelming the 
classifier with FP detections, thus optimizing overall system efficiency 
and ecological reliability.

Fine-tuned BirdNET, when used as a detector with a 0.6 confidence 
score threshold, failed to detect 68% of positive samples, meaning a 
large portion of bird vocalizations were missed. Lowering the confi-
dence threshold to 0.1 improved recall, reducing FNs to 36%, but at the 
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cost of 20% FPs, a 950% rise in FPs. In contrast, the Bird Song Detector 
achieved a more balanced trade-off, reducing FNs to 26% while keeping 
FPs below 5%. This demonstrates its effectiveness in distinguishing bird 
vocalizations from background noise while maintaining high precision.
Threshold Optimization and Error Analysis.  Compared to BirdNET 
at 0.6 confidence, the Bird Song Detector significantly improved de-
tection performance. Specifically, FNs decreased by 67% (from 211 to 
70), ensuring that far more bird vocalizations were correctly identified. 
While this came with a 50% increase in FPs (from 6 to 9), the absolute 
increase was only three additional FPs. Considering that this evaluation 
was conducted on the test subset, which comprised approximately 100 
to 200 min of annotated audio, where the potential for false detections 
is virtually limitless, an increase of three FPs has a negligible impact 
on overall performance while higher numbers like 63 would create 
excessive noise in PAM applications.

Upon reviewing the Bird Song Detector’s FPs, we found that some 
errors were due to anthropogenic noises, such as repetitive fence hits, 
which may share frequency patterns or temporal structures with bird 
vocalizations. This highlights an ongoing challenge in field recordings, 
where separating natural and human-made sounds can be difficult. 
Further refinements, such as incorporating additional non-bird train-
ing data or adaptive thresholding strategies, could help reduce these 
misclassifications.

On the other hand, when compared to BirdNET at the lower 0.1 
confidence score threshold, which is BirdNET’s default confidence score 
threshold setting, the Bird Song Detector further reduced FNs by 48% 
and FPs by 86%, though it resulted in a 20% decrease in TPs. Despite 
this slight reduction, the overall improvement in FN minimization and 
precision suggests that the Bird Song Detector provides a more reliable 
balance between sensitivity and accuracy. This is particularly relevant 
in ecological studies, where minimizing FNs is often more critical than 
reducing FPs, as missed vocalizations can lead to an underestimation 
of species presence and activity.

Beyond improving bird presence detection, the Bird Song Detector 
enhances species classification by ensuring that only relevant audio 
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Fig. 8. Spider web plots comparing model performance metrics. The blue area 
represents the Best Model, while the orange area indicates the Full Frequencies model.

segments are analyzed. Unlike BirdNET, which operates on fixed 3-s 
windows regardless of whether they contain a vocalization, our detec-
tor selects only segments where bird sounds have been detected. This 
targeted segmentation reduces background noise and mitigates the ef-
fects of overlapping calls, two major obstacles in species identification. 
As a result, downstream classifiers operate with a higher signal-to-noise 
ratio, leading to greater classification accuracy and a more efficient 
analysis of bioacoustic data.

Comparison of Classifiers and Deep Learning Models.  The Bird 
Song Detector significantly improved classification accuracy across all 
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Fig. 9. Binary confusion matrix for the Bird Song Detector on the test dataset with a 
confidence threshold of 0.15.

models. Without it, classifiers exhibited higher FP rates and greater mis-
classification errors, as they processed unfiltered, noisy audio segments. 
The reduction in Idx Pred/Ann indicates that the Bird Song Detec-
tor provided cleaner, more structured data, improving the alignment 
between predictions and ground truth annotations.

The shown improvements underscore the importance of pre-filtering 
irrelevant audio segments before classification, as it reduces false detec-
tions and improves prediction reliability. The Random Forest classifier 
also demonstrated notable gains, increasing its accuracy from 0.19 
to 0.29 when paired with the Bird Song Detector, suggesting that 
traditional machine learning models can remain competitive in bioa-
coustic classification when leveraging BirdNET embeddings (Ghani 
et al., 2023).

However, despite these improvements, classification performance 
in this study remained lower than the results reported in the original 
BirdNET research (Kahl et al., 2021). BirdNET was originally eval-
uated on clean, single-species recordings, achieving a mean average 
precision of 0.791, an F0.5 score of 0.414 for annotated soundscapes, 
and an average correlation of 0.251 with hotspot observations (areas 
with high species diversity). However, in real-world PAM applica-
tions, these conditions do not hold, leading to a notable decline in 
performance (Kahl et al., 2021; Pérez-Granados, 2023). Our findings 
align with these observations, species classification accuracy remained 
moderate even after fine-tuning BirdNET and applying the Bird Song 
Detector. Background noise, species imbalances in training data, and 
acoustic similarities among certain species contributed to misclassi-
fications, highlighting the ongoing challenges of automated species 
identification in PAM programs.

Several species exhibited particularly low precision, recall, and 
F1-scores, reflecting a failure to correctly classify them. These mis-
classifications are likely due to class imbalance, species similarity, and 
dataset limitations. The Bird Song Detector improves classification by 
filtering out non-bird segments, but it does not eliminate the fundamen-
tal challenge of uneven species representation in training data, which 
remains a limiting factor in overall classification performance.

Despite overall improvements, deep learning models such as
ResNet50 and MobileNetV2 performed poorly in both approaches. 
Their baseline accuracy was extremely low (0.02), and they exhibited 
high FP rates. Without the Bird Song Detector, these models had 
very high Idx Pred/Ann values (3.2682), meaning they overpredicted 
species occurrences far beyond the actual number of vocalizations. Al-
though applying the Bird Song Detector reduced this metric to 0.6306, 
their classification performance remained inadequate, with weighted 
F1-scores below 0.02.
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Fig. 10. Species-specific normalized confusion matrix showing the performance of the BirdNET classifier on predicted segments from the test dataset, processed by the Bird Song 
Detector. The values are normalized by rows, with 𝑌 -axis labels representing the ground truth species and 𝑋-axis labels representing the predicted classes. Darker cells indicate 
higher correct prediction ratios. The main diagonal (highlighted in bold) corresponds to TP ratios for each species, where predicted labels match the ground truth. Off-diagonal 
cells represent FPs, where the prediction is incorrect. The ‘‘Bird’’ category includes species not present in the classifier’s training data. In such cases, predictions were assigned to 
the ‘‘Bird’’ class, as no better classification could be made.
These findings suggest that deep learning models pre-trained on 
image datasets (e.g., ImageNet) do not generalize well to bioacoustic 
classification tasks. Unlike images, bird vocalizations are temporal 
and frequency-dependent, requiring models to extract patterns across 
time and frequency domains. The poor performance of ResNet50 and
MobileNetV2 suggests that models optimized for visual features fail to 
capture the nuances of bioacoustic signals. Future adaptations for deep 
learning in this field should explore pretraining on bioacoustic datasets 
rather than visual datasets like ImageNet or using spectrogram-specific 
architectures designed for temporal pattern recognition (Ghani et al., 
2023; Xiao et al., 2022; Xie et al., 2022; Gong et al., 2021).
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The reduction in Idx Pred/Ann after applying the Bird Song Detector 
further reinforces the importance of pre-filtering noisy audio segments, 
even for deep learning architectures. However, the failure of ResNet50
and MobileNetV2 to achieve meaningful classification — despite cleaner 
input data — suggests that architectural modifications, domain-specific 
pretraining, and tailored feature extraction methods are necessary for 
deep learning to be effective in species classification.
Limitations Due to Class Imbalance.  One limitation of our dataset 
is the imbalance in the number of annotated vocalizations per species. 
This imbalance mirrors natural patterns in animal abundance, behavior, 
and detectability — a well-documented issue in ecological monitoring 
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studies (Cui et al., 2019; Beery et al., 2018; MacKenzie et al., 2002). 
While this poses a challenge for classification performance, it also 
reflects the operational conditions of real-world PAM applications, 
reinforcing the need for methods that can handle such skewed data 
distributions.

This class imbalance was also evident during dataset splitting and 
model evaluation. Some species had a disproportionately larger number 
of training samples than others, while others, such as Falco tinnunculus
and Milvus migrans, were extremely underrepresented. The poor per-
formance of the model was likely due to this imbalance, as classifiers 
tend to overfit to these dominant classes while performing poorly on 
underrepresented ones (Johnson and Khoshgoftaar, 2019; Cui et al., 
2019; Pantazis et al., 2024). Although BirdNET’s built-in oversampling 
was supplemented with mixup augmentation, these techniques were not 
sufficient to counteract imbalance effect—particularly for underrepre-
sented species. Combining diverse augmentation methods has shown 
promising results in recent work for improving species-level recall in 
imbalanced datasets (Kumar et al., 2024).

Prior to this upsampling, 17 species had fewer than 10 instances, 
and their classification results were generally poor, with most having 
an F1-score of 0.00. In contrast, only three species had more than 50 
instances, and they exhibited relatively higher F1-scores, with Sturnus
achieving 0.42 and Emberiza calandra reaching 0.46. Class frequency 
and recall appear highly correlated. A clear example is Anthus pratensis, 
which had 42 instances in the test set and achieved a recall of 1.00 but 
a low precision of 0.16, indicating that the model predicts this class 
frequently. Conversely, species like Cettia cetti and Galerida cristata have 
moderate recall values (0.13 and 0.47, respectively), showing some 
predictive ability but still suffering from low precision. This suggests 
that the model frequently predicted this species, even when incorrect, 
due to its prevalence in the training data. Conversely, species like
Falco tinnunculus (n = 2) or Milvus migrans (n = 9) had zero recall and 
precision, indicating that the model was completely unable to recognize 
them. These bird species normally fly over large altitude and far away 
from the recorders, so getting more vocalizations that could be labeled 
and used to train the models would require a more focused sampling. 
The model likely overfits to the more frequently occurring classes while 
underperforms on rare species. This issue is further exacerbated by the 
presence of species with very small sample sizes, leading to cases where 
the model never correctly identifies them.

This variation in classification accuracy across species suggests that 
more balanced training datasets are needed to improve generaliza-
tion and adaptive thresholding techniques, where confidence scores 
are dynamically adjusted per species, which could enhance perfor-
mance (Pérez-Granados, 2023; Wood and Kahl, 2024). Despite these 
challenges, the Bird Song Detector mitigates some imbalanced effects 
by ensuring classifiers only process relevant bird vocalizations, reduc-
ing misclassifications from overwhelming background noise.

The Bird Song Detector helps mitigate data imbalance by ensuring 
that classifiers only process relevant audio segments of any bird vo-
calization, reducing misclassification errors caused by excessive back-
ground noise. However, even with this improvement, classification 
performance is still constrained by the lack of diverse and represen-
tative training data. Addressing this limitation would require curated 
datasets with balanced species representation and adaptive threshold-
ing techniques to optimize classification confidence based on species 
prevalence.

Data Bias in Public Bird Sound Resources.  Additionally, BirdNET’s 
performance is still influenced by biases in its training data. The 
public datasets used for BirdNET training (e.g., Xeno-canto Foundation, 
2024; Macaulay Library, 2024) are dominated by high-quality focal 
recordings, which lack overlapping sounds and real-world acoustic 
complexity. This makes BirdNET less effective in identifying species in 
dense, multi-species environments, such as Doñana National Park.
Ecological Implications and Future Applications.  Although the 
conservation challenges of Doñana are multiple and require complex 
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solutions from the different social agents involved, we believe that the 
practical implications of our research for ecological monitoring and 
conservation of bird populations are significant. Indeed, the integration 
of Deep Learning models applied to PAM allows for the cost-effective 
and scalable monitoring of bird diversity, which is essential for tracking 
bird-species trends over large protected areas. Managers of Doñana can 
use information from automatic sound classification of bird species to 
assess the health status of the different habitats present in the area 
(as many bird species serve as indicators of environmental changes), 
effectively combining them with direct census monitoring and other 
methods. This information helps to design conservation measures trying 
to mitigate bird species diversity loss. While the current work is based 
on a subset of annotated data, full-scale deployment of this pipeline 
across the entire dataset from Doñana National Park is ongoing. For 
this reason, winter migratory species may not be represented in the 
annotated subset used here. However, future analyses will incorporate 
these additional recordings. At last, the main aim of the BIRDeep 
project is to enable a real-time tracking of avian diversity to have 
accurate information on bird diversity in large, protected areas such 
as Doñana National Park.

6. Conclusions

We have demonstrated the feasibility and advantages of integrating 
a Bird Song Detector with fine-tuned classifiers for detecting and clas-
sifying bird vocalizations in the soundscapes of Doñana National Park. 
The proposed pipeline enhances both detection and classification accu-
racy by isolating relevant audio segments before species identification. 
This approach mitigates many of the challenges faced by traditional 
classification models, particularly in complex acoustic environments.

The Bird Song Detector plays a crucial role in improving model re-
liability by significantly reducing FNs while maintaining a manageable 
FP rate. This ensures that classifiers process only the most relevant seg-
ments, leading to more accurate species predictions. However, persis-
tent challenges, such as species misclassification due to class imbalance 
and the presence of anthropogenic noise, highlight the need for fur-
ther refinements. Addressing these limitations will require expanding 
annotated datasets, incorporating adaptive thresholding strategies, and 
improving classifier fine-tuning for underrepresented species.

Another key challenge lies in the biases present in public-access 
bioacoustic datasets, which primarily contain clean, focal recordings 
with minimal background noise. These datasets do not fully repre-
sent real-world soundscapes, affecting model generalization in environ-
ments like Doñana, where overlapping bird calls and non-bird sounds 
are common. Future work should focus on developing datasets that 
better capture the complexity of natural soundscapes and on training 
models to differentiate between species in multi-species recordings.

Future research should explore the integration of more advanced 
bioacoustic deep learning architectures, as models pretrained on im-
age datasets like ImageNet may not fully capture the temporal and 
spectral characteristics of bird vocalizations. Additionally, refining de-
tection models to better distinguish between bird sounds and anthro-
pogenic noise will further enhance the applicability of this approach in 
real-world conservation settings.

By providing a structured and scalable method for bird vocal-
ization analysis, the proposed pipeline represents a significant step 
towards improving automated biodiversity monitoring. With continued 
advancements in data quality and model adaptation, this framework 
has the potential to be deployed in diverse ecological contexts, facili-
tating more precise and efficient monitoring of avian populations and 
applying bird identification for conservation and management.
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