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Abstract
A major current challenge in evolutionary biology is to understand how networks of interacting species shape

the coevolutionary process. We combined a model for trait evolution with data for twenty plant-animal

assemblages to explore coevolution in mutualistic networks. The results revealed three fundamental aspects of

coevolution in species-rich mutualisms. First, coevolution shapes species traits throughout mutualistic networks

by speeding up the overall rate of evolution. Second, coevolution results in higher trait complementarity in

interacting partners and trait convergence in species in the same trophic level. Third, convergence is higher in

the presence of super-generalists, which are species that interact with multiple groups of species. We predict

that worldwide shifts in the occurrence of super-generalists will alter how coevolution shapes webs of

interacting species. Introduced species such as honeybees will favour trait convergence in invaded communities,

whereas the loss of large frugivores will lead to increased trait dissimilarity in tropical ecosystems.
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INTRODUCTION

Coevolution is a key process producing, and maintaining, the complex

networks of interacting species (Ehrlich & Raven 1964; Thompson

2005) that Darwin called the entangled bank: �I am tempted to give

one more instance showing how plants and animals, most remote in

the scale of nature, are bound together by a web of complex relations�
(Darwin 1859). A solid body of theory has explored the role of

coevolution in shaping species traits in pairs or small groups of

interacting species (Gandon & Michalakis 2002; Gomulkiewicz et al.

2003; Nuismer et al. 2008, 2010; Jones et al. 2009). An increasingly

wide variety of empirical studies have shown that most evolving

interactions involve at least a few groups of interacting species – e.g.

seed predation by birds (Parchman & Benkman 2008), predation of

amphibians by snakes (Geffeney et al. 2002) and pollination by insects

(Thompson & Cunningham 2002; Gómez et al. 2009). These

multispecific interactions are, in turn, embedded in even larger

networks that often exhibit a predictable structure (Olesen et al. 2007;

Vázquez et al. 2009). Within large mutualistic networks, some highly

generalist species may have disproportionally large effects on

evolution and coevolution (Thompson 2005; Guimarães et al. 2007;

Olesen et al. 2007), but exactly how these species affect the

coevolutionary process is still unclear.

Recent research has identified some of the ecological, evolutionary

and coevolutionary processes that may shape ecological assemblages

(Holyoak & Loreau 2006; Rezende et al. 2007b; Santamarı́a &

Rodrı́guez-Gironés 2007; Vázquez et al. 2009; Thébault & Fontaine

2010; Gómez et al. 2011). Coevolutionary models of two interacting

species suggest that mutualisms often favour the evolution of trait

complementarity, in which there is a high degree of trait matching

between interacting partners (e.g. Nuismer et al. 1999). Examples

include the match between nectar concentration and pollinator�s
preferences (Baker et al. 1998), and seed size and body mass of

frugivores (Jordano 1995). Moreover, trait convergence, in which trait

similarity emerges as a response to similar selective pressures, is often

observed in mutualisms, such as Müllerian mimicry rings (Meyer

2006), colour patterns in cleaning fishes (Côte 2000), and patterns of

fruit design in unrelated plant species (Jordano 1995). Complemen-

tarity and convergence have been identified as potential factors that

may shape the organization of large mutualistic networks (Thompson

2005; Rezende et al. 2007b; Santamarı́a & Rodrı́guez-Gironés 2007;

Vázquez et al. 2009).

A major current challenge in coevolutionary research is therefore to

understand the specific roles that coevolution plays in shaping trait

evolution in interactions comprising up to hundreds of species

(Thompson 2005). Understanding coevolution in multispecific assem-

blages requires more than adding up the outcomes of pair-wise

interactions with specificity, reciprocity and simultaneity. One

approach is to use tools derived from complex network theory to

develop testable hypothesis about the role of network structure in

coevolutionary dynamics (Guimarães et al. 2007), i.e. how indirect and

cascading effects in diversified assemblages contribute to reciprocal

pair-wise interactions.

We combined a model for single-trait evolution with network

analysis and data for 20 empirical plant-animal assemblages to

explore how short-term evolution and coevolution shape the spread

of traits through mutualistic plant-animal networks. Our approach

represents a first step to formalize models of coevolution in

multispecific assemblages of mutualists by explicitly considering trait

evolution within a complex network architecture. We focused on
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three central questions: (1) Does coevolution among species contribute

significantly to the overall rate of evolution in complex networks? (2)

Does coevolution result in a greater degree of complementarity and

convergence within webs than expected in the absence of reciprocal

selection? (3) Does the evolution of new lifestyles that rely upon

species-rich webs (i.e. super-generalists) affect the patterns of trait

evolution among species? Super-generalists are species, such as

honeybees, quetzals, large cotingids, and some fruit-eating primates,

that rely upon a local diversity of species and connect semi-independent

groups of species within communities (Jordano et al. 2003; Thompson

2005; Olesen et al. 2007).

MODELLING APPROACH AND ANALYSIS

The evolutionary model

We used discrete-event simulations to model single-trait evolution in

animals and plants linked to each other within a complex network of

interactions. In the model, animal and plant phenotypic traits were

modelled as real numbers (Zi), in which i denotes a species. Initially,

the trait values of all animals and plants were randomly assigned by

sampling normal distributions with mean lZ = 0 and variance

r2
Z ¼ 10�2. Trait evolution was modelled as discrete events of

change caused by selective pressures imposed by mutualistic

partners. In this approach, each node (species) has a state (trait

value) and the state of each node is updated in each time step. This

approach allowed us to follow specific trait changes, to quantify

coevolutionary and evolutionary events, and to measure the degree

of trait complementarity and convergence in simulations with and

without some network properties, e.g. presence of super-generalist

species.

Model dynamics

At each time step, a species may undergo trait evolution due to

background evolution (e.g. responses to the abiotic environment) or

network-derived evolution (i.e. responses to direct and ⁄ or indirect

effects of biotic interactions). There was a fixed probability p = 10)3

that the trait of a given species changes due to background evolution,

which includes all evolutionary change not related to selective

pressures imposed by patterns of mutualistic interactions, including

genetic drift, fluctuating selection not related to the mutualistic

interactions and the selective effects associated with other networks of

biological interaction (Melián et al. 2009). Hence, we avoided the

ecologically unrealistic assumption that all evolution in species was

due to interactions within the network. If the trait value of species i,

Zi, evolved due to background evolution to a new state, Z�i, then

Z�i = Zi + e, in which e was randomly sampled from a normal

distribution with mean le = 0 and variance r2
e ¼ 10�4. Trait values

might also change due to selection to maximize complementarity

among interacting partners, hereafter referred to as network-derived

evolution.

Network-derived evolution

In our model, there was a fixed probability q = 10)2 that any species

might show directional evolutionary change by increasing its

complementarity to a randomly selected partner j. Thus, we assumed

that selection due to the mutualistic interactions is stronger than in

other selective pressures ( p > q). Species j is selected with probability

equal to dij, the ecological dependences of species i on its interaction

with j (Jordano 1987; Bascompte et al. 2006). If the trait value of

species i evolved to a new state due to directional evolutionary change,

then Z�i = Zi + Rij, in which Rij was the response to selection

imposed by species j that interacts with i (see below).

Network-derived evolution may also occur due to evolutionary

responses of species to background evolutionary change, direct

evolutionary changes or previous evolutionary responses in their

multiple partners, leading to several classes of evolutionary and

coevolutionary events (Fig. 1). We defined fij as the probability of

phenotypic selection imposed by a phenotypic change in a given

partner translating into actual evolutionary change. Therefore, fij, is

the probability of phenotypic change in species i as a direct outcome

of selection on individuals of species i imposed by a previous

phenotypic change in species j. We assumed fij is mediated by the

ecological dependence of species i on j, fij = mdij, in which m is a

scaling constant, m = 0.5. If the trait value of species i evolved in

response to a shift in the trait value of species j to a new state, then

Z�i = Zi + Rij, as in the simple, directional evolutionary change

described above.

Response to selection imposed by mutualistic partners

We used the breeder�s equation from quantitative genetics to estimate

the response to selection, but we placed it within an explicit network

framework, Rij tð Þ ¼ h2
i Sij tð Þ, in which h2

i was the heritability of trait Zi

and Sij tð Þ is the strength of selection (Lush 1937; Falconer & Mackay

1996; Beder & Gomulkiewicz 1998). Estimates of traits heritabilities

were not available for the interacting species in the networks analysed.

Nevertheless, there is evidence of a broad range of heritability values

for traits mediating animal-plant interactions (Boag & Grant 1978;

Wheelwright 1993). In our simulations, heritability was randomly

sampled from a normal distribution with mean lh2 ¼ 0:25 and

variance 0.1. We constrained the heritability values to vary between

0.05 and 1. If the randomly sampled value was < 0.05, we set

h2 = 0.05 and if it was > 1, we set h2 = 1.

We assumed that selection imposed by mutualistic partners

favours complementarity, which is the match between the pheno-

typic traits of interacting partners. There is strong evidence of

selection favouring complementarity in mutualisms (Thompson

2005) and examples include the match between floral corolla depth

and the length of hummingbird bills (Dalsgaard et al. 2008) or the

tongue length of insects that pollinate the flowers (Borrell 2005;

Anderson & Johnson 2008). Previous theoretical work has investi-

gated how complementarity might affect network organization

(Rezende et al. 2007a; Santamarı́a & Rodrı́guez-Gironés 2007). Here,

we moved one step further to an understanding of how evolution

shapes networks by allowing complementarity to emerge directly

from selection among interacting species. We computed the strength

of selection as Sij = Oi)Zi, in which Oi is the trait value that

maximizes complementarity between i and j – defined as Oi = Zj for

sake of simplicity – and corresponds to the mean trait value of

species i after selection.

Each simulation ended after 10 000 time steps, a number

sufficiently large to allow asymptotic results (Fig. S5). The model

output quantified the number of evolutionary events leading to

increased trait complementarity and ⁄ or increased convergence.

We performed sensitivity analyses of the model, and the results were

qualitatively similar across a broad range of values of the parameters
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(Supporting Information). The model was implemented in MATLAB

7.4.

Quantifying events of trait evolution, convergence and

complementarity

The discrete-event structure of the model used to explore evolutionary

dynamics allowed us to determine if a given event of trait evolution

was triggered by a chain of previous events of trait evolution, such as

Zi fi Z�j fi Z�k, in which the selection imposed by trait value of

species i, Zi, on species j led to trait evolution of species j, fi Z�j,
that, in turn, led to trait evolution in species k, fi Z�k. We classified

each event of trait evolution into one of five classes of change,

depending on whether or not the event involved a pair of species,

three or more species (cascades), unidirectional evolution, or

reciprocal evolution (i.e. coevolution) (Fig. 1). (a) Simple evolutionary

change occurred if trait evolution recorded in species i, Z�i, was a result

of Zj fi Z�i (Fig. 1a). (b) A non-coevolutionary cascading event occurred if

trait evolution recorded in species i, Z�S(i), was a result of a chain of

events including at least two additional species, such as

Zk fi Z�j fi Z�i, in which no species was repeated (Fig. 1b).

(c) A pair-wise coevolutionary events occurred if trait evolution in species i,

Z�i, resulted from Zi fi Z�j fi Z�i, closing a round of reciprocal

selection. It was not a consequence of trait evolution involving other

species than i and j (Fig. 1c). (d) A direct coevolutionary cascading event

(DCCE) was similar to pair-wise coevolutionary event, but the chain

of events that led to a DCCE, Z�i, included at least one additional

species, Zk fi Z�i fi Z�j fi Z�i (Fig. 1d). (e) Finally, an indirect

coevolutionary cascading event occurred if trait evolution observed in

species i, Z �i, was separated from previous changes in species i by

events of trait evolution in more than one intermediate species,

such as Zi fi Z �k fi Z �u fi Z �v fi Z �i (Fig. 1e). Events of

type (a) and (b) were strictly non-coevolutionary events, as none of

them involves reciprocal evolutionary change, whereas (c), (d) and (e)

encompassed one set of reciprocal evolutionary events (coevolution)

in the interacting species. In addition, events of type (b), (d) and (e)

were cascading effects, whereas (a) and (c) did not involve cascades.

Thus, the discrete-event structure of the model allowed us to assess

and compare the complex ways in which evolutionary and coevolu-

tionary changes can cascade through complex networks of interaction.

We quantified the degree of trait complementarity and ⁄ or conver-

gence in each simulation. We computed the degree of complemen-

tarity as � log sð Þ, in which s was the mean pair-wise difference

between traits of interacting animals and plants. The degree of

convergence was defined as � log gð Þ, in which g was the mean pair-

wise difference between traits of species at same trophic level

(e.g. fruit-eating animals).

Numerical simulations using empirical mutualistic networks

We then used the model to undertake an explicit analysis of the

coevolutionary consequences of the structure of 20 empirically

documented mutualistic networks in which the patterns of interaction

and mutual ecological dependence (Jordano 1987; Bascompte et al.

2006) between species have been studied (9 plant-frugivore and

11 plant-pollinator networks, Supporting Information).

We first explored the relationship between evolution and coevo-

lution in mutualistic networks by performing simulations on each

empirical network. We assumed a fixed pattern of interaction among

the species within the network to focus on trait evolution over short

time scales. Trait evolution may lead to a shift in the patterns of

interaction in mutualisms, but this simplifying assumption allowed us

to explore how empirical patterns of interaction would influence how

traits would evolve given a particular network structure. We then
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Figure 1 Evolution and coevolution within multispecific networks. (a–f) Squares represent animals, circles plants, red symbols with thick contours represent species that show

shifts in phenotype, and arrows indicate which species are showing directional phenotypic change. Some of these events (red arrows) are (a) simple directional change related to

a partner, which may lead to (b) evolutionary cascades. Other evolutionary responses may lead to coevolutionary events (yellow arrows), in which a species responds to changes

in other species that were directly or indirectly caused by the first species, such as in (c) pair-wise coevolution or (d) direct and (e) indirect coevolutionary events within

cascades. (f) Coevolutionary and evolutionary events may cascade through species-rich networks, affecting several species simultaneously. Network depicts interactions among

plants and frugivorous animals in a local community, Nava de las Correhuelas, SE Spain.
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relaxed the assumption of fixed patterns of interaction and explored

how the evolution of super-generalists would affect subsequent

coevolutionary dynamics (see below).

Coevolution and the rates of evolution

We first explored a scenario in which trait evolution occurs only due

to background evolution. This scenario allowed us to describe how

traits would evolve without the joint effects of reciprocal and non-

reciprocal selection imposed by mutualistic networks. For each real

network (n = 100 simulations per real network), we computed the

average degree of complementarity and convergence of traits before

and after a fixed number of time steps (10 000). We then averaged all

values of complementarity and convergence across networks.

We then explored the role of coevolution in generating comple-

mentarity and convergence by using four different versions of our

evolutionary model. We contrasted the outcomes of simulations of the

evolutionary model with simulations in which we did not allow

coevolutionary events and ⁄ or cascading events. Coevolution was

prevented by setting fij = 0 in cases where selection imposed by

species i led to trait evolution in j. Cascades were prevented using a

similar approach. If species j showed an evolutionary response due to

selection imposed by species i, then we set fkj = 0 for every partner k

of species j other than i. By combining simulation scenarios with and

without coevolution and with and without cascading effects, this

factorial design allowed us to explore the role of coevolution and

cascades in shaping evolutionary dynamics.

We investigated how the temporal dynamics of complementarity

and convergence were affected by coevolution and cascading effects

using a repeated-measures general linear model (GLM) (n = 100

simulations of each model per network), in which coevolution and

cascading effects are factors that can be either present or absent. In a

second run of simulations, we used another GLM to test the effects of

coevolution and cascades on complementarity, convergence and the

rates of trait evolution, measured as the number of events of trait

evolution recorded in different classes of evolutionary change

(n = 1000 simulations of each model per network) in a fixed number

of time steps (10 000). In all analyses we controlled for network-

specific effects using the identity of network as an additional factor.

We used the residuals of GLMs between network identity and

evolutionary outcomes in a simple linear regression to investigate if,

after controlling for network-specific effects, there was an association

between complementarity and convergence.

The impact of super-generalists

Modules, groups of interacting species that are semi-independent of

other groups within larger networks, are a common feature of many

ecological networks (Guimarães et al. 2007; Olesen et al. 2007). The

diversity of potential mutualistic partners available among the distinct

modules may allow the evolution of super-generalists (Thompson

2005; Olesen et al. 2007). These species often have a set of eco-

morphological, behavioural, or physiological adaptations that allow

them to interact not only with many species, but also with species that

strongly differ in their biological features (Thompson 2005). Thus,

super-generalists not only interact with many partners, they rely on

and connect multiple modules within networks (Jordano et al. 2003;

Thompson 2005; Olesen et al. 2007). Therefore, the super-generalist

lifestyle is only possible after the emergence of large networks

of interacting species. We explored how the evolution of

super-generalists affects trait evolution and influences the coevolu-

tionary process within networks. We identified super-generalists by

following the definition and approach provided by Olesen et al. (2007)

(see Supporting Information).

We simulated the evolutionary model in real networks (scenario 1,

with super-generalists) and in two related scenarios (n = 100

simulations per scenario ⁄ real network). In scenario 2 (without

super-generalists), we decreased the among-module connectivity of

super-generalists, i.e. they did not differ from other species in

connecting species from different modules (Supporting Information).

Thus, scenario 2, trimming just those interactions of super-generalists

that �glue� the modules together, can be viewed as a description of

how the structure of a mutualistic network would look like prior to the

emergence of the super-generalist lifestyle.

Differences in evolutionary dynamics between networks with and

without super-generalists might indicate the role of this lifestyle in

driving evolution and coevolution. However, super-generalists may

affect network structure in two different ways: by increasing the

number of interactions among modules or simply by increasing

the number of interactions in the network. We disentangled the

evolutionary and coevolutionary consequences of both structural

shifts by creating a third scenario (control) in which we randomly

reduced the overall number of interactions (Supporting Information).

We tested the effects of super-generalists on the evolutionary

dynamics through a GLM, using the three different scenarios (with

super-generalists, without super-generalists and control) as levels of

the same factor. In addition, we used network identity as an additional

factor to account for network-specific effects. We performed paired

comparisons among these three scenarios using the Tukey HSD test.

RESULTS

In the absence of network-derived evolution, the degrees of comple-

mentarity before and after the evolutionary dynamics were very similar

(mean degree of complementarity across networks: )0.113 ± 0.014 vs.

)0.116 ± 0.018, mean ± SD). In fact, eleven networks (55%) showed

lower degrees of complementarity after the evolutionary dynamics.

Background evolution decreased the degree of convergence both in

plants (before vs. after: )0.103 ± 0.025 vs. )0.113 ± 0.024) and

animals (before vs. after: )0.111 ± 0.015 vs. )0.122 ± 0.015). In all

networks, degrees of trait convergence for both animals and plants after

evolutionary dynamics were lower than the initial degree of trait

convergence. In contrast, network-derived evolution often led to higher

degrees of complementarity (2.097 ± 0.438) and convergence both in

plants (1.691 ± 0.633) and animals (1.728 ± 0.612, n = 1000 simula-

tions per network, 10 000 time steps).

In the presence of network-derived evolution, the simulated dynamics

led to a greater frequency of evolutionary events than coevolutionary

events (Fig. 2a), with coevolutionary events representing only a small

percentage (9.8 ± 1.2%, mean ±SE, n = 1000 simulations per net-

work) of all directional changes. Nevertheless, evolution and coevolu-

tion both contributed to the increased convergence and complemen-

tarity among traits within the network. In fact, coevolution significantly

sped up the evolutionary rate within networks (repeated measures GLM,

F1 7977 > 60.89, P < 0.001), and significantly increased both comple-

mentarity and convergence (GLM, F1 79977 > 81.84, P < 0.001 for all

evolutionary outcomes; Fig. 2b). The distribution of initial traits among

species did not affect the emergence of complementarity and
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convergence. Alternative trait distributions, including those based on

real phenotypic traits, led to no qualitative difference in the simulation

outcomes (see Supporting Information).

Changes in complementarity and convergence, however, did not

occur in lock-step. Selection for complementarity led to convergence,

indicating dependence of these two evolutionary outcomes, but the

degree of convergence varied widely among networks with similar

degrees of complementarity. After controlling for particulars of each

network, convergence was partially correlated with complementarity

(R2 = 0.493, F = 7776.68, d.f. = 7999, P < 0.001 for convergence

among animals; R2 = 0.432, F = 6092.23, d.f. = 7999, P < 0.001 for

convergence among plants). Hence, as species coevolve within large

networks, the evolutionary convergence of a trait within trophic levels

only partially depends on the patterns of evolutionary complemen-

tarity of traits between trophic levels.

Coevolution fuelled convergence and complementarity by increas-

ing the total number of directional changes (GLM, F1 79977 =

448124.80, P < 0.001) and the number of non-coevolutionary,

directional changes occurring within cascades (GLM,

F1 39979 = 439766.30, P < 0.0001). Coevolution increased the num-

ber of cascading evolutionary events in which species showed an

evolutionary response to a partner that was coevolving with other

species within the network. In fact, the effects of coevolution

depended strongly on the presence of cascading effects (Fig. 2b).

In simulations in which cascades were allowed to occur, coevolution

led to much higher degrees of complementarity (coevolution · cas-

cading effects, F1 79977 = 108.39, P < 0.0001), and convergence

within animal (GLM, F1 79977 = 74.23, P < 0.0001) and plant species

assemblages (GLM, F1 79977 = 79.27, P < 0.0001). Thus, by

generating cascading effects and speeding up the overall rate

of evolutionary change, coevolution generates additional non-

coevolutionary events.

The impact of super-generalists

Super-generalists occurred as a small percentage of species within the

twenty empirical networks (3.5 ± 3.8% of all species, mean ± SD,

n = 20 networks). They significantly increased in frequency with

increasing species richness in the networks (log-log regression,

R2 = 0.639, F = 31.83, d.f. = 19, P < 0.001) and were absent in 5

of the 20 networks.

Super-generalists had two clear impacts on simulated coevolutionary

dynamics. Their presence led to a significant increase in the frequency

of non-coevolutionary cascading events (GLM, F2 4455 = 870.08,

P < 0.001; Fig. 3a) and a decrease in the frequency of coevolution-

ary events (GLM, F2 4455 > 2669.71, P < 0.001, for all types of

coevolutionary events; Fig. 3a). These two effects arose from the

asymmetries that occur in interactions among super-generalists and

other species in mutualistic networks (Bascompte et al. 2003, 2006):

species that interact with super-generalists are more likely to evolve in

response to them, whereas super-generalists will seldom respond to an

evolutionary shift in one of their many partners (Guimarães et al. 2007).

Therefore, although coevolutionary events are important to the

dynamics of species-rich mutualisms (Fig. 2), their direct effects may

be most apparent prior to the emergence of super-generalists. Once

there are super-generalists in the network, there is a significant increase

in complementarity (GLM, F2 4455 = 224.63, P < 0.001; Fig. 3b) and,

especially, convergence (for animals: F2 4455 = 855.48, P < 0.001; for

plants: F2 4455 = 699.02, P < 0.001; Fig. 3b).

We studied the underlying causes for change in the evolutionary

dynamics when super-generalists are present by investigating how

variation in the degree of dependence of species on super-generalists

affects evolution and coevolution. We calculated the strength of

super-generalists as the fraction of all ecological dependences among

species in the network that are dependencies of other species on

super-generalists. We used a GLM to investigate if the strength of

super-generalists explains differences between simulations in networks

with and without super-generalists (scenario 1 and 2). As the degree of

dependency of other species on super-generalists increased, so did the

differences in complementarity (GLM, F2 2996 = 88.43, P < 0.001;

Fig. 3c) and convergence (for animals: F2 2996 = 244.21, P < 0.001;

for plants: F2 2996 = 280.37, P < 0.001; Fig. 3d) between simulations

with and without super-generalists.

Super-generalists, by altering network structure, therefore drove

the dynamics of the entire assemblage by increasing both comple-

mentarity and, especially, convergence (Fig. 3b). The increase in

convergence and complementarity was not simply a consequence of

super-generalists increasing the total number of interactions within

the network. Rather, it resulted from the connections that
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Figure 2 Coevolution and the emergence of complementarity and convergence.

(a) The frequency (mean ± SD) of the different classes of evolutionary and

coevolutionary events (Fig. 1) at the end of the simulations. (b) After the end of

simulations, we computed the effects of coevolution for simulations in which

cascading effects were allowed (black bars) or not (white bars) to occur. The effects

of coevolution were estimated as the ratio between the least squares means of

complementarity and convergence for simulations allowing or not coevolution.

Positive ratios indicate that coevolution increases the values of the metric of

interest, whereas negative values indicate decreases in the values. Error bars depict

SD.
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super-generalists create among modules (Fig. 3a–b), i.e. their role in

glueing subsets of species that otherwise would remain unconnected

(Olesen et al. 2007). Hence, super-generalists shifted the evolutionary

dynamics by increasing the cascading effects of each evolutionary

event among modules (Fig. 4). In fact, in the presence of super-gen-

eralists, the average short path length, ‘, between any pair of species

within a network decreased by 16%. For real networks
�l ¼ 2:87� 0:43 links, whereas for networks without super-generalist
�l ¼ 3:42� 0:94 links (paired t-test, t = )3.50, P = 0.002, n = 15

networks). The simulations help visualize how this small-world effect

of super-generalists acts, organizing subsequent evolution and

coevolution (Fig. 4).

DISCUSSION

Interactions among free-living species are sometimes viewed as so

�diffuse� that it is difficult to understand how natural selection and

coevolution shape these highly complex webs of interaction. Part of

the challenge of coevolutionary biology is to get beyond that view and

find ways of probing how coevolution acts within large networks

(Thompson 2005). Coevolutionary network models based on the

structure of real webs of interaction, as analysed herein, have the

potential to aid in the development of specific hypotheses on

multispecific coevolution.

Our results identify three central points about how evolutionary

change might occur in large networks. First, coevolution is likely to be

a key process shaping trait evolution within mega-diversified

communities, through direct and indirect influences on the rates

and pathways of evolutionary change. Our results generalize to species

networks the notion that coevolution speeds up trait evolution in

interacting species, as suggested by mutually specific pair-wise models

(Nuismer et al. 1999) and studies of experimental evolution (Forde

et al. 2008; Paterson et al. 2010). In species-rich networks, coevolu-

tionary and non-coevolutionary changes are intrinsically interwoven,

with coevolutionary events generating non-coevolutionary events

through a complex set of cascading effects. Therefore, the importance

of coevolution in shaping traits in large species-rich networks cannot

be assessed simply by determining the relative proportion of current

selection that involves reciprocal selection between pairs of species.

By generating cascading effects and speeding up the overall rate of

evolutionary change, coevolution generates additional non-coevolu-

tionary events. Hence, as networks develop, coevolution may appear

to be increasingly rare within species-rich mutualisms specifically

because it fuels further non-reciprocal, evolutionary events.

In our simulations we kept the network structure fixed, but the

coevolutionary process may actually change the patterns of interaction

within communities (Thompson 2005). Future work should investi-

gate how coevolution would affect the dependences of interacting

species, leading to shifts in network structure that ultimately could

change the role of coevolution in shaping trait patterns. These results,

however, together with those showing the unexpected effects of

adding species in pair-wise, eco-evolutionary models (reviewed in
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Figure 4 Super-generalists mould trait evolution in mutualistic networks. (a) The network describing interactions between plants (squares) and their pollinators (circles) in the

subarctic alpine zone of Latnjajaure, in Sweden (Elberling & Olesen 1999). Colours indicate different groups of interacting species (modules). (b–d) Snapshots of a simulated

coevolutionary cascade. Red lines indicate selective pressures imposed by species that show trait evolution. (b) The super-generalist plant Saxifraga aizoides responds to an

evolutionary change in one of its pollinators (both in red). (c) Several species (red) respond to the trait evolution of the super-generalist species, including a species in a second

module. (d) This cascade led to S. aizoides (yellow square) to coevolve to one of its partners. This coevolutionary event (yellow) fuelled new non-coevolutionary (red) changes in

species in different modules of the network.

Letter Evolution and coevolution in mutualistic networks 883

� 2011 Blackwell Publishing Ltd/CNRS



Fussmann et al. 2007) and the destabilizing role of evolution on

ecological dynamics of species-rich communities (Loeuille 2010),

suggest the utility of studying evolution and coevolution in a

multispecies context.

Second, our results indicate that two broad classes of coevolution-

ary dynamics, namely coevolutionary complementarity and conver-

gence, which are often considered as independent processes (Thomp-

son 2005), are correlated yet semi-independent processes. Our results

predict that coevolutionary convergence in a trait within a trophic

level may, at least in part, emerge as a consequence of selection for

complementarity of traits between trophic levels. Additional studies,

however, will be needed to assess how the relationship between

convergence and complementarity is altered amid more complex

structures of multivariate phenotypic selection (Iwao & Rausher 1997;

Gómez et al. 2009).

Third, our results highlight that not all species are equally important

for the evolutionary dynamics of multispecific interactions (Basco-

mpte et al. 2003; Jordano et al. 2003; Guimarães et al. 2007). Rather, a

small proportion of species, the super-generalists, may play a central

role in organizing evolution and coevolution in species-rich assem-

blages, driving them toward high complementarity, and above all,

convergence. Thus, the emergence of the super-generalist lifestyle is a

fundamental component of the maintenance of convergence at the

community-level within highly diversified mutualistic assemblages,

which, in turn, may be essential for the addition and persistence of

more specialized species (Bascompte et al. 2003). The altered

dynamics resulting from the emergence of super-generalists can be

viewed as a small-world effect (Watts & Strogatz 1998; Olesen et al.

2006), as has been observed in ecological, molecular, technological

and social networks, in which a given node (species) creates short

paths connecting modules within the network (assemblages), which, in

turn, may favour the emergence of cascading effects. Our model

suggests that super-generalists might trigger analogous dynamics in

ecological networks, and help explain why cascading effects can be so

pervasive.

Our findings may have direct consequences for the conservation of

endangered ecosystems (Kiers et al. 2010). Recent work on invasive

dynamics by exotic species in mutualistic assemblages (Lopezaraiza-

Mikel et al. 2007; Aizen et al. 2008) has shown that introduced species

may quickly become generalists at the core of the network of

interactions (Aizen et al. 2008). The worldwide introduction of some

super-generalist species such as honeybees may therefore generate

far-reaching alteration of the coevolutionary process within native

assemblages, driving species traits towards higher complementarity and

convergence in assemblages that previously lacked super-generalists.

On the other hand, the local extinction of endangered super-generalist

species, such as large frugivores (Hansen & Galetti 2009), may lead

not only to significant losses of mutualistic services by restriction of

interactions to less efficient mutualists, but also to fast-paced

evolutionary diversification in species traits. Under either scenario,

evolution and coevolution are likely to alter the traits of many species

as the presence of super-generalists continues to change in many

major ecosystems worldwide.
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Dalsgaard, B., González, A.M.M., Olesen, J.M., Timmermann, A., Andersen, L.H.

& Ollerton, J. (2008). Pollination networks and functional specialization: a test

using Lesser Antillean plant-hummingbird assemblages. Oikos, 117, 789–793.

Darwin, C. (1859). On the Origin of Species. Murray, London.

Ehrlich, P.R. & Raven, P.H. (1964). Butterflies and plants: a study in coevolution.

Evolution, 18, 586–608.

Elberling, H. & Olesen, J.M. (1999). The structure of a high latitude plant-flower

visitor system: the dominance of flies. Ecography, 22, 314–323.

Falconer, D.S. & Mackay, T.F.C. (1996). Introduction to Quantitative Genetics, 4th edn.

Addison Wesley Longman, Harlow, Essex, UK.

Forde, S.E., Thompson, J.N., Holt, R.D. & Bohannan, B.J.M. (2008). Coevolution

drives temporal changes in fitness and diversity across environments in a bac-

teria-bacteriophage interaction. Evolution, 62, 1830–1839.

Fussmann, G.F., Loreau, M. & Abrams, P.A. (2007). Eco-evolutionary dynamics of

communities and ecosystems. Funct. Ecol., 21, 465–477.

Gandon, S. & Michalakis, Y. (2002). Local adaptation, evolutionary potential and

host-parasite coevolution: interactions between migration, mutation, population

size and generation time. J. Evol. Biol., 15, 451–462.

Geffeney, S., Brodie, E.D. & Ruben, P.C. (2002). Mechanisms of adaptation in a

predator-prey arms race: TTX-resistant sodium channels. Science, 297, 1336–1339.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online

version of this article:

Figure S1 Mean degree of complementarity and convergence for three

sets of initial conditions of trait values: traits sampled from normal

distribution (green), from uniform distributions (red) and from

distributions based on actual data on species-specific phenotypic

values (yellow). Error bars represent the associated 95% confidence

intervals.

Figure S2 Mean degree of complementarity (a), convergence among

animals (b) and plants (c) for different ratios between rates of

directional (q) and random (p) phenotypic changes. Error bars

represent 95% confidence interval. The red circles represent the

benchmark value for the parameter.

Figure S3 Mean degree of complementarity (a), convergence among

animals (b) and plants (c) for different values of m (relationship

between ecological and evolutionary dependence). Error bars repre-

sent 95% confidence interval. The red circles represent the benchmark

value for the parameter.

Figure S4 Mean degree of complementarity (a), convergence among

animals (b) and plants (c) for different values of heritability. Error bars

represent 95% confidence interval. The red circles represent the

benchmark value for the parameter.

Figure S5 Mean complementarity (a), convergence (animals, b; plants,

c) for simulations with different number of time steps. Time steps

were measured using the number of independent events of change

(IEC, the sum of events by p and q). Error bars, 95% confidence

interval. The red circles, benchmark value for the parameter.

Table S1 Mutualistic networks used in the coevolutionary simulations.

The matrices describing the networks analysed are available under

request. Network labels follow (Bascompte et al. 2006; Rezende et al.

2007b).
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1. Table S1. Mutualistic networks used in the coevolutionary simulations. The 

matrices describing the networks analyzed are available under request. Network 

labels follow (Bascompte et al. 2006; Rezende et al. 2007b).

Network Interaction Reference
BAHE Pollination (Barrett & Helenurm 1987)
DIHI Pollination (Dicks et al. 2002)
DISH Pollination (Dicks et al. 2002)
EOL Pollination (Elberling & Olesen 1999)
KT90 Pollination (Kato et al. 1990)
IPNK Pollination (Inouye & Pyke 1988)
MEMM Pollination (Memmott 1999)
MOMA Pollination (Mosquin & Martin 1967)
MOTT Pollination (Motten 1982)
OLLE Pollination (Ollerton et al. 2003)
SMAL Pollination (Schemske et al. 1978)
CACG Seed dispersal (Carlo et al. 2003)
CACI Seed dispersal (Carlo et al. 2003)
FROS Seed dispersal (Frost 1980)
GEN2 Seed dispersal (Galetti & Pizo 1996)
Guitián Seed dispersal (Guitián 1983)
HRAT Seed dispersal (Jordano 1985)
NCOR Seed dispersal (Jordano et al. 2009)
SNOW Seed dispersal (Snow & Snow 1971)
WYTH Seed dispersal (Snow & Snow 1988)

2. Exploring parameter space

 We ran a set of simulations to assess how the choice of parameter values in 

the model affected evolutionary dynamics. We used as a baseline the same parameter 

values we reported in the text, varying each parameter individually. We performed 

this additional set of simulations by using a real network (NCOR, S1) that describes 

the interactions between plants and fruit-eating animal in Nava de las Correhuelas, 

SE Spain (Fig. 1F).

 We first investigated the sensitivity of our results to different initial 
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conditions. In our original model, initial trait values were randomly sampled from 

normal distributions. We tested two other distributions of initial trait values: (1) 

animals and plant traits randomly assigned by sampling uniform distributions, and 

(2) animals and plant traits sampled from distributions based on the actual 

phenotype values of interacting species. We used the distribution of bill gape widths 

and seed diameters found in the interacting species in NCOR network. The latter 

phenotypic distribution follows an exponential distribution, whereas the bill gape 

width follows a normal distribution. The confidence intervals for mean degree of 

complementarity and convergence show high overlap among simulations with 

different initial conditions (Fig. S1), indicating the choice of the initial distribution of 

traits did not result in any qualitative difference in outcomes. 

Fig. S1: Mean degree of complementarity and convergence for three sets of initial 
conditions of trait values: traits sampled from normal distribution (green), from 
uniform distributions (red) and from distributions based on actual data on species-
specific phenotypic values (yellow). Error bars represent the associated 95% 
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confidence intervals.

 We then investigated the role of different rates of background evolution and 

network-derived evolution in generating complementarity and convergence. 

Background evolution created random variation in complementarity and 

convergence, whereas simple directional changes increased the complementarity of 

partners and convergence among species in the same trophic level. As a consequence, 

rates of network-derived evolution (q) higher than background evolution (p), q/p > 1 

led to an increase in both complementarity and convergence (Fig. S2). Nonetheless, 

the confidence intervals for the degrees of complementarity and convergence 

showed broad overlap throughout most q/p values (Fig. S2). In this sense, the 

confidence intervals for the outcomes of the ratio parameter used in the simulations, 

q/p= 10, showed broad overlap with the outcomes of ratios that were orders of 

magnitude smaller (q/p= 10-3) or larger (q/p= 102) (Fig.S2).
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Fig. S2: Mean degree of complementarity (a), convergence among animals (b) and 
plants (c) for different ratios between rates of directional (q) and random (p) 
phenotypic changes. Error bars represent 95% confidence interval. The red circles 
represent the benchmark value for the parameter.

Accordingly, the association between ecological dependence and evolutionary 

change, m, was only weakly related to the degree of complementarity and 

convergence achieved (Fig S3). In fact, even for extreme m-values, such as  

and , the confidence intervals for degree of complementarity and 

convergence showed significant overlap (Fig. S3). Similar results were also observed 

heritability, h2 (Fig. S4). Finally, convergence and complementarity increased with the 

number of time steps (Fig. S5), until asymptotic values were reached. In this context, 

the value used in simulations (104 time steps) was adequate to generate asymptotic 
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values for complementarity and convergence (Fig S5).

Fig. S3: Mean degree of complementarity (a), convergence among animals (b) and 
plants (c) for different values of m (relationship between ecological and evolutionary 
dependence). Error bars represent 95% confidence interval. The red circles represent 
the benchmark value for the parameter.
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Fig. S4. Mean degree of complementarity (a), convergence among animals (b) and 
plants (c) for different values of heritability. Error bars represent 95% confidence 
interval. The red circles represent the benchmark value for the parameter.
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Fig. S5: Mean degree of complementarity (a), convergence among animals (b) and 
plants (c) for simulations with different number of time steps. Time steps were 
measured using the number of independent events of change (IEC), which is the sum 
of events of trait evolution generated by p and q. Error bars represent 95% confidence 
interval. The red circles represent the benchmark value for the parameter. 
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2. Additional information about simulations with and without 

supergeneralists

3.1.Supergeneralist: definition

Mutualistic networks often show evidence of modularity (Fonseca & Ganade 

1996; Guimarães et al. 2007; Olesen et al. 2007), in which subgroups (modules or 

compartments) of species interact more with each other than with other species 

within the network. Here, we used the approach introduced by Guimerà & Amaral 

(2005a, b) for mapping the structure of complex networks and adapted for 

mutualistic networks to identify supergeneralists by Olesen et al. (2007). This 

approach is based on the use of a simulated annealing algorithm (SA) to identify 

modules within a network, see Guimerà & Amaral (2005a, b) for additional 

information. After identification of modules, it is possible to define the role of a 

species i in the module s, using two different metrics: standardized within-module 

degree and among-module connectivity (Guimerà & Amaral 2005b; Olesen et al. 

2007). All analyzes were performed using the software NETCARTO (kindly provided 

by Roger Guimerà).

The standardized within-module degree of species i, zi, is defined as 

, in which kis is the number of interactions of species i with other 

species in s (i.e., the within-module degree),
 

 and SDks are, respectively, the mean 

and standard deviation of the within-module degree of all species in s. Therefore, the 

larger the zi, the higher the relative number of interactions of species i with other 

species within its own module. The among-module connectivity of species i, ci, is 

defined as:
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    ,

in which NM is the number of modules within the network, ki is the number of 

interactions of species i, kit is the number of interactions of i with species in module t. 

The higher the ci, the more evenly distributed are the interactions of i across species 

in different modules. We followed the concepts introduced by Olesen et al. (2007) for 

analyzing combinations of zi and ci and heuristically defined a supergeneralist as a 

network hub, i.e., a central species within its own module, zi > 2.5, and 

simultaneously interacting with species in different modules in a similar way, ci > 

0.62 (Olesen et al. 2007).

3.2.Scenarios

Supergeneralists differ of other species in the network by interacting with 

many species in the different modules within the network. To explore the impact of 

the evolution of supergeneralists, we simulated the evolutionary dynamics in three 

scenarios based on the actual structure of real networks with supergeneralists. The 

first scenario simulates the evolutionary dynamics using the actual real network. The 

second scenario simulates a decrease in the among-module connectivity, i.e., 

supergeneralists did not glue the whole network by interacting with species in many 

different modules. Rather, specialists are similar to any other species in the network 

in their patterns of interaction with other modules. The third scenario assesses this 

effect by separating the role of supergeneralists as simple providers of additional 

interactions vs. their role connecting different modules together (gluing subsets of 

species that otherwise would remain unconnected).

a) Scenario 2: networks without supergeneralists
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The second scenario simulates the network structure prior the evolution of 

supergeneralists by selectively removing part of the interactions of supergeneralists 

and other species in the network. We reduced g, which is the number of modules 

with which a species interacts, for all supergeneralist species. To do that, we used the 

following algorithm: (i) we computed gm, defined as the median number of modules 

with non-supergeneralist species interact in the real network, and (ii) for any 

supergeneralist i in the real network, we removed the interactions of i with all species 

of a randomly selected module until gi = gm. All modules, except for the 

supergeneralist’s own module, could have been selected with the same probability. 

We then (iii) simulated the evolutionary dynamics in the resulting network, and (iv) 

repeated (i) to (iii) for 100 iterations, recording the frequency of different classes of 

evolutionary events (Fig. 1) and the degree of complementarity and convergence. 

Moreover, we recorded final connectance in all replicates, which we used in the 

second scenario (below). Note that this algorithm allows us to reduce the number of 

links of supergeneralists, keeping constant the patterns of interaction of any other 

species in the network. In this scenario, there is no particular species using a large set 

of species in different modules. Thus, scenario 2 can be viewed as a description of 

how the structure of a mutualistic network would look like prior the emergence of 

supergeneralists and their lifestyle that rely upon a diversity of modules to survive.

b) Scenario 3: control

 By increasing the number of interactions among modules, supergeneralists 

also increase the total number of interactions in the network. We used the scenario 3 

(Control) to detangle between the evolutionary effects of these two structural shifts 

due to supergeneralists. In the scenario 3, we randomly reduce the total number of 

interactions by using the following algorithm: (i) we randomly selected without 

replacement a network generated from the second scenario as a benchmark; (ii) we 
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randomly removed interactions from the real network until the final connectance be 

the same as the connectance of benchmark network; (iii) we simulated the 

evolutionary dynamics in the resulting network; and (iv) we repeated (i) to (iii) for 

100 iterations, recording the frequency of different classes of evolutionary events 

(Fig. 1) and the degree of complementarity and convergence. We kept at least one 

interaction per species, because species without interactions are biologically 

meaningless. The algorithm for Control led to networks with the same number of 

interactions that networks generated through Scenario 2, but without targeting 

interactions that supergeneralist create between modules. Thus, Scenario 3 controls 

for evolutionary consequences of shifts in number of interactions.
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