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ABSTRACT

Synzoochory is the dispersal of seeds by seed-caching animals. The animal partner in this interaction plays a dual
role, acting both as seed disperser and seed predator. We propose that this duality gives to synzoochory two distinctive
features that have crucial ecological and evolutionary consequences. First, because plants attract animals that have not
only positive (seed dispersal) but also negative (seed predation) impacts on their fitness, the evolution of adaptations to
synzoochory is strongly constrained. Consequently, it is not easy to identify traits that define a synzoochorous dispersal
syndrome. The absence of clear adaptations entails the extra difficulty of identifying synzoochorous plants by relying on
dispersal traits, limiting our ability to explore the full geographic, taxonomic and phylogenetic extent of synzoochory.
Second, the positive and negative outcomes of interactions with synzoochorous animals are expressed simultaneously.
Consequently, synzoochorous interactions are not exclusively mutualistic or antagonistic, but are located at some point
along a mutualism–antagonism continuum. What makes synzoochory interesting and unique is that the position of
each partner along the continuum can be evaluated for every plant–animal interaction, and thus the continuum
can be precisely described by assessing the relative frequency of positive and negative interaction events in each
pairwise interaction. Herein we explore these two main features of synzoochory with a comprehensive quantitative
survey of published studies on synzoochory. Synzoochory has been recorded for at least 1339 plant species differing
in life forms, from annual and short-lived herbs to long-lived trees, belonging to 641 genera and 157 families widely
distributed across the globe and across the seed plant phylogeny. Over 30 animal families belonging to five disparate
taxonomic groups (rodents, marsupials, birds, insects, and land crabs) potentially act as synzoochorous dispersers.
Although synzoochory appears to be fundamentally a secondary dispersal mode, many abundant and dominant trees
are primarily synzoochorous. In addition, we found evidence of the existence of diplosynzoochory (caching animals
acting both as primary and secondary dispersers of the same individual seed), mostly in nut-bearing trees. Finally, we
found that synzoochorous interactions are widely spread across the mutualism–antagonism continuum. Nevertheless,
there were some differences among disperser species and functional groups. Corvids and some rodents (cricetids,
nesomyids, sciurids) were located in the positive-effects region of the continuum and presumably behave mostly as
dispersers, whereas land crabs and insects were located in the negative-effects extreme and behave mostly as seed
predators. Our review demonstrates that synzoochory is not an anecdotal ecological interaction. Rather, it is pivotal to
the functioning of many ecosystems where the natural regeneration of keystone plant species depends on the activity
of granivorous animals that play a dual role. This distinctive interaction should not be ignored if we wish to have an
accurate understanding of the functioning of natural systems.

Key words: conditional mutualism, dual effects, hoarding, interaction intensity, mutualism–antagonism continuum,
seed-dispersal adaptation, seed-dispersal effectiveness, zoochory.
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I. INTRODUCTION

Plants can disperse their seeds through multiple mechanisms,
many of which involve the action of animals. Seeds can
be transported incidentally on the outside of animals,
attached to their skin, fur, or feathers, a dispersal mode
called ectozoochory or epizoochory (Couvreur et al., 2008).
Alternatively, seeds can be transported inside animals, a
dispersal mode called endozoochory (van der Pijl, 1982;
Jordano, 2000). Animals providing this service are mostly
frugivorous vertebrates (Fleming & Kress, 2011; Jordano,
2013), although some frugivorous invertebrates (de Vega
et al., 2011; Blattmann et al., 2013; Boch et al., 2013),
mammalian herbivores (Janzen, 1984; Malo & Suárez, 1995;
Pakeman et al., 2002; Mouissie et al., 2005) and granivorous
birds (Heleno et al., 2011; Tella et al., 2015; Blanco et al.,
2016) can also disperse seeds by endozoochory. In addition,
many plants are dispersed by ants in myrmecochory
(Beattie, 1985; Rico-Gray & Oliveira, 2007). A common
feature of these, otherwise diverse, animal-mediated dispersal
modes is that there are specific plant structures that have
apparently evolved to promote dispersal either by attracting
the dispersers or by facilitating the attachment and/or
movement of the seeds by the disperser (Sorensen, 1986;
Willson & Traveset, 2000; Herrera, 2002; Lengyel et al.,
2010). Thus, animal-mediated seed dispersal strategies in
higher plants are based on a myriad of adaptations, both
on the plant side in order to secure effective seed dispersal
(sensu Schupp, Jordano & Gómez, 2010), and on the animal
disperser side in order to use plant resources efficiently
(Jordano, 2000). For example, epizoochorous seeds display
barbs, recurved bract tips, hooked prickles and hairs,
curved spines, viscid mucilage or other adhesive structures
(Sorensen, 1986; Yang et al., 2012). These morphological
structures favour adhesion to the external parts of the
disperser’s bodies (Fahn & Werker, 1972). Endozoochorous
plants, on the other hand, produce fleshy fruits to attract
frugivorous dispersers (Jordano, 2013). A fascinating variety

of fleshy fruit displays involving sophisticated infructescences,
ancillary rewards and diversified colours, odours, and pulp
nutrient contents has evolved among plants to attract
endozoochorous dispersers (van der Pijl, 1982; Willson &
Whelan, 1990; Cipollini & Levey, 1997; Jordano, 2000;
Herrera, 2002; Valido, Schaeffer & Jordano, 2011). Finally,
myrmecochorous ants are attracted to the seeds by attached
lipid-rich elaiosomes (Beattie, 1985; Rico-Gray & Oliveira,
2007). In these latter two cases, the animal feeds on these
secondary structures rather than feeding directly on the
seeds, which are dispersed.

Contrasting with these dispersal modes, synzoochory is
a dispersal mode where the dispersers, rather than being
attracted to a secondary trait, are directly attracted to the
‘seed’ (defined broadly as the dispersal unit, independently
of its anatomical structure or embryological origin) – the
seed is the reward. Specifically, synzoochory is defined as
the deliberate transportation of seeds externally, generally
in the mouth, by a granivorous animal, followed by the
hoarding of at least a fraction of those seeds (Dixon, 1933;
van der Pijl, 1982). Thus, synzoochory involves the dispersal
of seeds, an attractive long-term, storable food for animals,
by species directly seeking resources within the seed such
as endosperm or embryos (Vander Wall, 1990; Hulme,
2002). Seeds not consumed immediately may be stored some
distance away from the parent plant, and some may escape
being eaten if the animal forgets them, stores more than can
be consumed, or dies before recovering them (Iluz, 2011).
Relying on granivores to disperse seeds may represent a
‘window of opportunity’ given that many of them handle
fruits and seeds in unique ways that may eventually favour
successful establishment. In particular, many granivores do
not process seeds in situ nor ingest them or destroy them
immediately after visiting a fruiting plant, but take the seeds
away from the vicinity of the parent and frequently cache
them for later use in sites suitable for seedling establishment
(Vander Wall, 2001).
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Etymologically, synzoochory means ‘dispersal together
with animals’ (syn- from Greek ‘together’), and refers to the
act of moving the seeds not inside or outside the animal but
along with it. Although the term synzoochory was introduced
in the scientific literature long ago (Dixon, 1933), it has not
been used as frequently as other seed-dispersal terms despite
this type of dispersal being widely studied during the last five
decades. In most of these studies, this type of dispersal was
referred to as dispersal by hoarding or caching. We propose
nevertheless that the term ‘synzoochory’ is more consistent
with the general terminology in seed-dispersal studies.

Synzoochory was originally considered similar to
myrmecochory (Fahn & Werker, 1972), although the general
opinion today is that these two types are different. In addition,
synzoochory has been related to dyszoochory (dys- meaning
‘ill’ or ‘bad’), the dispersal of seeds by granivores that
accidentally lose them during transport, and stomatochory
(stomato- meaning ‘mouth’), the transport of seeds in the bill
or mouth (van der Pijl, 1982; Iluz, 2011). These two dispersal
modes have been observed in ants (Wolff & Debussche, 1999;
Rico-Gray & Oliveira, 2007), granivorous birds like pigeons
and parrots (Böhning-Gaese, Gaese & Rabemanantsoa,
1999; Blanco et al., 2015; Tella et al., 2015; Baños-Villalba
et al., 2017) and some granivorous mammals, such as bats
and primates, which drop seeds while feeding (Kevan &
Gaskell, 1986; Barnett et al., 2012). Although they share some
common characteristics, synzoochory is unique because it is a
dispersal mode provided by animals that intentionally move
and cache seeds, albeit unintentionally losing some of them.
In brief, under our conception, synzoochory is the dispersal
of seeds by seed-caching seed predators.

Because synzoochory is carried out by seed-eating animals,
a major feature that distinguishes this type of dispersal
from other animal-mediated dispersal modes is the animal
partner of this plant–animal interaction plays a dual role,
acting simultaneously as an effective seed disperser and as
a seed predator (Hulme, 2002; Retana, Picó & Rodrigo,
2004; Theimer, 2005; Vander Wall & Beck, 2012). The
dual role played by synzoochorous dispersers has two main
consequences for the dynamics and evolution of synzoochory.
A first consequence is that the positive (effective seed
dispersal) and negative (seed predation) outcomes of the
interactions are expressed simultaneously (Hulme, 2002;
Aliyu et al., 2018). Even the removal of several seeds by
a single animal can result in a fraction of them being
successfully dispersed while others are directly preyed upon.
For this reason this interaction is considered to be a
conditional mutualism (Jorge & Howe, 2009; Aliyu et al.,
2018), becoming mutualistic when the benefit of effective
seed dispersal exceeds the cost of seed predation (Theimer,
2005). It is widely acknowledged that mutualistic organisms
can confer benefits to their partners while also imposing
fitness costs (Bronstein, 2001). For example, mycorrhizal
fungi benefit their partners by providing increased uptake of
limiting soil resources such as phosphorous, but at the same
time harm them by consuming carbon from photosynthesis.
Thus, although mycorrhizal fungi are usually mutualistic,

they can be parasitic under some environmental conditions or
when they colonize certain hosts (Johnson, Graham & Smith,
1997; Hoeksema et al., 2010). A mutualism–antagonism
continuum has been considered a useful framework to
study the functioning of interspecific interactions where
interacting organisms have both positive and negative
effects on their partner, including symbiotic interactions
such as legume–rhizobium symbioses (Regus et al., 2015),
endophytes (Saikkonen et al., 1998; Mandyam & Jumpponen,
2015) and mycorrhizae (Karst et al., 2008; Johnson &
Graham, 2012), and non-symbiotic interactions such as
endozoochory (Perea et al., 2013; Montesinos-Navarro et al.,
2017), ant–plant defence mutualisms (Cushman & Whitham,
1989; Cushman & Addicott, 1991), brood parasitism
(Canestrari et al., 2014), pollination (Rodríguez-Rodríguez,
Jordano & Valido, 2017) or synzoochory (Theimer, 2005;
Zwolak & Crone, 2012; Sawaya et al., 2018).

Thus, synzoochorous interactions are located somewhere
along a continuum running between pure mutualism and
pure parasitism (Johnson & Graham, 2012; Johnson et al.,
1997). For example, multiple granivorous animals consume
the acorns of Holm Oak (Quercus ilex) in the Western
Mediterranean. Many of these species of ungulates (wild
boar Sus scrofa, red deer Cervus elaphus, fallow deer Dama

dama, mouflon Ovis orientalis, Spanish ibex Capra pyrenaica,
roe deer Capreolus capreolus and Cuvier’s gazelle Gazella

cuvieri), lagomorphs (European rabbit Oryctolagus cuniculus

and Iberian hare Lepus granatensis), and rodents (crested
porcupine Hystrix cristata and garden doormouse Eliomys

quercinus) consume and destroy nearly all of the acorns they
find, thus acting mostly as seed predators (Díaz et al., 1993;
Santos & Tellería, 1997; Leiva & Fernández-Alés, 2003;
Gómez, 2004; Beudels-Jamar, Lafontaine & Devillers, 2005;
Bonal & Muñoz, 2007; Muñoz & Bonal, 2007; Gómez &
Hódar, 2008; Smit, Díaz & Jansen, 2009; Mori, Bozzi &
Laurenzi, 2017). Holm-oak acorns are also consumed by
several species of vertebrates which occasionally successfully
disperse them endozoochorously or dyszoochorously, such
as common crane Grus grus (Avilés, Sánchez & Parejo, 2002),
woodpigeon Columba palumbus (Smit et al., 2009), Barbary
macaque Macaca sylvana (Deag, 1983; Ménard, 2002) and
brown bear Ursus arctos (Wiegand et al., 1998; Rodríguez et al.,
2007; Lalleroni et al., 2017). In addition, Holm-oak acorns
are consumed by larder- and scatter-hoarding rodents, such
as black rat Rattus rattus, woodmouse Apodemus sylvaticus,
Algerian mouse Mus spretus and red squirrel Sciurus vulgaris,
which may disperse and cache some of the acorns they
encounter (Bonal & Muñoz, 2007; Muñoz & Bonal, 2007;
Pons & Pausas 2007a; Gómez, Puerta-Piñero & Schupp,
2008). Finally, acorns are consumed by scatter-hoarding
corvids, such as hooded crow Corvus cornix, Eurasian jay
Garrulus glandarius and magpie Pica pica, which disperse and
cache a large proportion of the acorns they harvest (Santos
& Tellería, 1997; Gómez, 2003; Pulido & Díaz, 2005; Pons
& Pausas, 2007b; Melletti & Mirabile, 2010; Morán-López,
Alonso & Díaz, 2015a; Martínez-Baroja et al., 2017). Thus,
the animals consuming Holm-oak acorns occupy different
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Fig. 1. A hypothetical representation of the mutualism–antagonism continuum for the Holm oak Quercus ilex and the granivorous
species feeding and potentially dispersing the acorns. The x-axis represents the range of outcomes of the pairwise oak–granivore
interactions between extremes of only positive interaction effects (green) and only negative interaction effects (purple). The location
of each granivorous species along the x-axis is calculated as the proportion of acorns that were dispersed alive and either cached
(synzoochorous seed dispersers) or deposited intact (others) minus the proportion of acorns that were eaten in situ or immediately after
being dispersed. Because accurate information on these values does not exist for all species, the positions as well as the intraspecific
variations of each granivorous species have to be taken only as approximate values intended to show in which part of the gradient
each species is more likely to lie based on the published literature and our own observations. Synzoochorous seed dispersers are
represented as filled dots, and non-caching species as white dots. Species represented, from right to left: Garrulus glandarius, Pica pica,
Sciurus vulgaris, Apodemus sylvaticus, Mus spretus, Rattus rattus, Columba palumbus, Macaca sylvanus, Grus grus, Ursus arctos, Oryctolagus cuniculus,
Gazella cuvieri, Capreolus capreolus, Cervus elaphus, Ovis orientalis, Sus scrofa. Note that there is no meaning to the vertical spread of species,
which is imposed to separate the species spatially so that the patterns can be clearly visualized. The silhouettes of the granivores
were downloaded from www.phylopic.org. They have a Public Domain license without copyright, except the silhouettes of G. cuvieri
(R. Groom), O. cuniculus (S. Werning), and R. rattus (R. Groom) that have a Creative Common license (http://creativecommons.org/
licenses/by/3.0).

positions on the continuum running between full antagonism
and full mutualism, and in fact together occupy much of
the gradient (Fig. 1). This continuum can be operationally
defined as the proportion of seeds receiving positive effects
(dispersed and either cached or deposited intact) minus
the proportion of seeds receiving negative effects (eaten
in situ without being dispersed or eaten immediately after
being dispersed), variables typically recorded in observational
and experimental studies of synzoochorous interactions
(Forget & Vander Wall, 2001; Hulme, 2002; Forget &
Wenny, 2005).

A second consequence of the occurrence of this duality
is that it may limit the options of plants to evolve
adaptations to dispersers. Since adaptations for attracting
dispersers will simultaneously attract predators, there will be

conflicting selection pressures on fruit and seed traits (Smith,
1975). Because the same organisms tend to exert complex
regimes of conflicting selection when acting simultaneously
as dispersers and predators (Smith, 1975; Vander Wall, 2001;
Gómez, 2004), synzoochorous dispersers exert weak selective
pressures most of the time. Consequently, there is not a clear
suite of adaptive traits associated with synzoochory (Smith,
1975; Howe & Smallwood, 1982; van der Pijl, 1982), and
defining a synzoochorous dispersal syndrome based solely on
plant traits is thus difficult (Howe & Smallwood, 1982; Iluz,
2011). The absence of apparent adaptations means that we
cannot reliably identify synzoochorous plants by means of
specific dispersal traits (but see Vander Wall & Moore, 2016;
Vander Wall, Barga & Seaman, 2017), a practice frequently
employed to identify epizoochorous, endozoochorous and
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myrmecochorous plants (Tiffney & Mazer, 1995; Rico-Gray
& Oliveira, 2007). This lack of traits universally associated
with synzoochory has important practical consequences for
determining its importance and frequency (but see Vander
Wall & Moore 2016; Vander Wall et al., 2017). Consequently,
there is not yet a general overview of the radiation and
extent of synzoochory among higher plants. This is surprising
given that Theophrastus of Eressus observed synzoochorous
dispersal of oaks by jays about 2300 years ago, making this
dispersal mode probably one of the first to be described
scientifically (Thanos, 2005).

Herein we propose a framework to study synzoochory
based on its defining characteristics. However, rather than
picking a few, arbitrarily selected illustrative case studies
of synzoochory to obtain general patterns, we conducted
a quantitative survey, as comprehensive as possible, and
extracted from it the main features of this unique
plant–animal interaction. Specifically, we first explore
the geographic, taxonomic and phylogenetic extent of
synzoochory among seed plants, both empirically describing
the diversity of plants receiving the dispersal service as
well as the variety of animals engaged in this mode of
dispersal. We also discuss the dispersal phase when hoarding
animals act and the intensity of interaction of this dispersal
mode. Finally, we highlight the consequences of the most
remarkable feature of this dispersal mode, the dual role as
predators and dispersers played by the animal partners. Our
goal is to depict the ecological and evolutionary relevance of
this critical dispersal mode.

II. THE EXTENT OF SYNZOOCHORY

(1) The database

No quantitative review summarizing the number and identity
of plant species that are dispersed by synzoochory has been
performed since Vander Wall (1990). To obtain an updated
database including published information on seed dispersal
by synzoochory, we conducted computer searches including
the terms (alone or in combination) ‘seed dispersal’, ‘seed
predation’, ‘synzoochory’, ‘scatter-hoarding’, ‘seed burial’,
‘seed removal’, ‘seed caching’ and ‘hoarding’. We considered
only those animals feeding directly on seeds, disregarding
species consuming other parts of the reproductive structures
of the plants, such as frugivores, elaiosome-eating ants, floral
herbivores, etc. That is, other types of dispersal, such as
endozoochory and myrmecochory, were not included in
the database. In addition, to distinguish granivorous species
acting as potential seed dispersers from those acting solely
as seed predators, we follow the definition of dispersal in
Schupp et al. (2010). In this view a seed is dispersed when
it is moved horizontally from the location where it was
encountered, irrespective of its final fate. Thus we omitted
studies where the authors explicitly stated that the animals
do not move any seed but consume all of the handled
seeds in situ (strict-sense granivory, as in seed-eating birds).
Furthermore, to distinguish synzoochorous dispersers from

dyszoochorous and stomatochorous dispersers, and exclusive
seed predators that disperse seeds before consuming them,
we only included in our database information on those
animals reported to cache seeds. By doing this, we were
conservative and only retrieved those studies where it was
explicitly indicated that the plants were interacting with
animals that remove, transport and cache some fraction of
the seeds they encounter, irrespective of the final fate of the
transported seed. That is, where animals both dispersed seeds
and contributed to the first critical step of effective dispersal
by caching some seeds rather than simply consuming them
all. Nevertheless, assuming that dispersal occurs when there
is horizontal movement of seeds (Schupp et al., 2010), once
a given granivorous animal disperser was identified as a
seed hoarder in at least one study, we considered all cases
involving dispersal by that species as being synzoochorous
dispersal even in the absence of evidence of caching in a
particular study.

From each source, we retrieved the plant and animal
taxonomic identities, the country and date of the study,
and the main biome where the interaction took place.
Olson et al. (2001) distinguished 14 main biomes, but
we grouped these into three main categories in order
to ensure enough samples in each type of habitat
to make reliable inferences. We grouped those studies
made in tropical and subtropical moist broadleaf forests,
tropical and subtropical dry broadleaf forests, tropical
and subtropical grasslands, savannas, and shrublands,
tropical and subtropical coniferous forests, mangrove, and
flooded grasslands and savannas into a Tropical category.
Likewise, we grouped all the studies made in temperate
broadleaf and mixed forests, temperate coniferous forests,
boreal forests/taiga, temperate grasslands, savannas, and
shrublands, montane grasslands and shrublands, and tundra
into a Temperate category. Finally, those studies made in
Mediterranean forests, woodlands, and scrub or sclerophyll
forests, deserts and xeric shrublands were grouped into an
Arid category. In addition, to the fullest extent possible
we compiled the seed mass (in mg) of the species included
in the data set. We obtained this information from the
Seed Information Database of the Kew Garden (data.kew
.org/sid), the TRY Plant Trait Database (https://www
.try-db.org/TryWeb/Home.php) and from original sources.
Our final database is provided electronically (see online
Supporting information, Appendix S1).

(2) Number and identity of synzoochorous plants

Our review indicates that synzoochory is not an anecdotal
phenomenon. Rather, synzoochory has been observed in at
least 1339 plant species differing in life forms from annual
and short-lived herbs to long-lived trees (N = 2223 case
studies, Appendix S1) and belonging to 641 genera and
157 families widely distributed across seed plants (Table 1).
That is, synzoochory has been observed in about 35% of the
plant families accepted by the Plant List v.1.1 (http://www
.plantlist.org). There are reports of synzoochory in species
from each of the four gymnosperm groups (Cycadophyta,
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Table 1. Number of seed plant species per plant family where synzoochory has been observed

Family Spp. Family Spp. Family Spp. Family Spp.

Gymnosperms
Araucariaceae 2 Ephedraceae 5 Pinaceae 55 Zamiaceae 1
Cupressaceae 4 Ginkgoaceae 1 Podocarpaceae 1
Cycadaceae 1 Gnetaceae 2 Taxaceae 2
Angiosperms
Acanthaceae 3 Casuarinaceae 1 Juncaceae 5 Plumbaginaceae 1
Achariaceae 1 Celastraceae 3 Lamiaceae 6 Poaceae 147
Adoxaceae 3 Cervantesiaceae 1 Lauraceae 34 Polygonaceae 13
Aextoxicaceae 1 Chrysobalanaceae 8 Lecythidaceae 7 Portulacaceae 1
Aizoaceae 3 Cistaceae 9 Liliaceae 2 Primulaceae 7
Amaranthaceae 9 Cleomaceae 1 Linaceae 4 Proteaceae 8
Amaryllidaceae 1 Clusiaceae 11 Loganiaceae 3 Putranjivaceae 1
Anacardiaceae 20 Colchicaceae 1 Magnoliaceae 3 Ranunculaceae 3
Anisophylleaceae 1 Combretaceae 6 Malpighiaceae 2 Resedaceae 2
Annonaceae 5 Connaraceae 2 Malvaceae 18 Restionaceae 3
Apiaceae 8 Convolvulaceae 4 Melastomataceae 17 Rhamnaceae 8
Apocynaceae 9 Cornaceae 2 Meliaceae 17 Rhizophoraceae 2
Apodanthaceae 1 Corynocarpaceae 1 Menispermaceae 2 Rosaceae 27
Aquifoliaceae 1 Coulaceae 2 Moraceae 26 Rubiaceae 15
Araceae 1 Crassulaceae 1 Muntingiaceae 1 Rutaceae 2
Araliaceae 5 Cucurbitaceae 2 Myricaceae 1 Sabiaceae 1
Arecaceae 74 Cyperaceae 7 Myristicaceae 13 Salicaceae 1
Asparagaceae 7 Dilleniaceae 1 Myrtaceae 19 Santalaceae 2
Asteraceae 65 Dipterocarpaceae 3 Neuradaceae 1 Sapindaceae 19
Austrobaileyaceae 1 Ebenaceae 6 Nitrariaceae 1 Sapotaceae 20
Balsaminaceae 1 Elaeagnaceae 1 Nothofagaceae 1 Saxifragaceae 1
Berberidaceae 1 Elaeocarpaceae 6 Nyctaginaceae 2 Schisandraceae 2
Betulaceae 7 Ericaceae 3 Ochnaceae 1 Scrophulariaceae 3
Bignoniaceae 6 Erythropalaceae 1 Olacaceae 1 Simaroubaceae 1
Bixaceae 1 Erythroxylaceae 2 Oleaceae 3 Solanaceae 4
Boraginaceae 11 Euphorbiaceae 29 Orobanchaceae 1 Staphyleaceae 2
Brassicaceae 28 Fabaceae 150 Oxalidaceae 2 Styracaceae 1
Burseraceae 10 Fagaceae 123 Paeoniaceae 1 Surianaceae 1
Cactaceae 3 Geraniaceae 7 Pandaceae 1 Tamaricaceae 1
Calophyllaceae 3 Gentianaceae 1 Pandanaceae 3 Theaceae 2
Campanulaceae 2 Goodeniaceae 1 Papaveraceae 1 Ulmaceae 2
Cannabaceae 3 Grossulariaceae 1 Passifloraceae 1 Urticaceae 5
Capparaceae 1 Haemodoraceae 1 Phyllanthaceae 1 Verbenaceae 4
Caprifoliaceae 3 Hernandiaceae 2 Phytolaccaceae 1 Violaceae 1
Caricaceae 1 Humiriaceae 2 Piperaceae 1 Xanthorrhoeaceae 2
Caryocaraceae 4 Icacinaceae 1 Pittosporaceae 3 Zygophyllaceae 3
Caryophyllaceae 14 Juglandaceae 11 Plantaginaceae 13

Ginkgophyta, Gnetophyta and Pinophyta) and from most
angiosperm groups (Table 1). Because we have included
in the data set only those species from which we found
published evidence of synzoochory, we are likely to be lacking
many species belonging to families typically dispersed by
synzoochory (e.g. Fagaceae, Arecaceae, Juglandaceae, etc.)
but that have not been studied; thus the true extent of
synzoochory will be more widespread than we document
here. We fully support the claim by Vander Wall, Kuhn &
Beck (2005b) that many times where seed predation has been
reported, at least some of the seeds were likely cached instead
and therefore dispersed synzoochorously rather than simply
being preyed upon.

Even with the limited attention that synzoochory
has attracted among ecologists, its ample taxonomical

distribution and high frequency of occurrence are striking.
In fact, the taxonomic distribution of synzoochory is
comparable to the frequency of other more systematically
studied dispersal mechanisms. For example, according to
Rico-Gray & Oliveira (2007), myrmecochory occurs in about
3000 species, whereas Lengyel et al. (2010) report evidence of
myrmecochory in more than 11500 species from 334 genera
and 77 families. Although myrmecochory has been reported
in far more species than synzoochory, this latter dispersal
mechanism is much more widely spread over the phylogeny
of the land plants, occurring in nearly twice as many
genera and families as myrmecochory. A similar case occurs
with endozoochory mediated by frugivores. Herrera (1989)
reported about 151 families, including both gymnosperms
and angiosperms, bearing fleshy fruits and thereby being
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totally or partially dispersed by means of endozoochory.
Given the high proportion of woody species with fleshy
fruits found in many vegetation types (Howe & Smallwood,
1982; Jordano, 2013) the number of endozoochorous species
perhaps exceeds that of synzoochorous species; nonetheless,
the number of families represented in these two dispersal
modes is equivalent. It is interesting to note that Tiffney
& Mazer (1995) inferred biotic dispersal, pooling all biotic
dispersal modes, for 123944 species from 6501 genera and
202 families. Although the number of species and genera
exhibiting synzoochory make up only a fraction of the species
and genera that are biotically dispersed, a remarkable 72% of
families having biotic dispersal of some kind appear to include
species with synzoochory. It is worth noting that in most of
these reviews the form of biotic dispersal was inferred when
a given plant species displayed specific structures to attract
specific dispersal vectors (elaiosome, fleshy pulp, etc.). In our
case, rather than inferring a synzoochorous plant species
based on the presence of a given trait, we included in our
review only those species where synzoochory was definitively
observed. This approach is very conservative. If we had
inferred synzoochory from the presence of certain traits,
such as large seeds, hard testa, dehiscent fruits, etc. (Vander
Wall et al., 2017), the number of recorded synzoochorous
species would be substantially greater. For example, Galetti
et al. (2010) proposed that plant species with seeds larger
than 0.9 g can be dispersed by scatter-hoarding agoutis
in the Neotropics. If we used this criterion, the number
of species potentially dispersed through synzoochory in
tropical and subtropical areas as well as in many temperate
forests would have been substantially larger. However, at
the same time we would have missed a large number of
synzoochorous species that do not express such traits. In
brief, we presume that synzoochory is much more frequent
than reported to date, and with the data at hand it has been
demonstrated that synzoochory occurs in many ecologically
and morphologically disparate lineages of plants.

(3) Number and identity of synzoochorous
dispersers

Food hoarding has been reported in many different types of
animals, both vertebrates and invertebrates (Vander Wall,
1990). However, only a subset of these species hoards
seeds and thereby potentially contributes to effective seed
dispersal. In our database, 33 animal families belonging
to five main taxonomic groups (rodents, marsupials, birds,
insects, and land crabs) have been documented dispersing
and caching seeds and thus acting as synzoochorous
dispersers (Table 2). The most frequent synzoochorous
dispersers were by far rodents, which dispersed about
66% of the plant species in our database. Rodents were
not only the most frequent but also the most diverse
group of dispersers, with 15 families represented in our
database (Table 2). Of these families, the most frequent
rodent dispersers were sciurids, dasyproctids, murids, and
heteromyids (Table 2). Insects were also important caching
animals, dispersing 19% of the plant species included in

Table 2. Number of plant species reported as being
synzoochorously dispersed by members of each animal family
and group

Family
Number of plant
species dispersed

Insects 487
Formicidae 461
Scarabaeidae 3
Carabidae 12
Gryllidae 17
Land crabs 62
Gecarcinidae 55
Gecarcinucidae 1
Grapsidae 1
Ocypodidae 3
Potamidae 2
Birds 132
Corvidae 100
Ptilonorhynchidae 1
Emberizidae 1
Fringillidae 2
Paridae 18
Picidae 21
Sittidae 6
Marsupials 17
Hypsiprymnodontidae 13
Potoroidae 4
Rodents 733
Caviidae 1
Cricetidae 84
Ctenomyidae 1
Cuniculidae 15
Dasyproctidae 136
Echimyidae 66
Gliridae 1
Heteromyidae 116
Hystricidae 9
Muridae 180
Nesomyidae 44
Octodontidae 1
Platacanthomyidae 2
Sciuridae 214
Spalacidae 1

the database. Synzoochorous insects were principally ants
(Table 2). Note that we are only considering granivorous
ants that disperse non-myrmecochorous seeds (seeds without
elaiosomes). It is important to note that plants dispersed
by harvester ants are probably dispersed both through
synzoochory and dyszoochory simultaneously. Ants were not
the only insects that dispersed seeds synzoochorously; beetles
and crickets are also active caching animals (Table 2). The
larvae of some species of carabids accumulate grass seeds
in their burrow (Kirk, 1972), while some crickets have
been observed caching seeds of trees and grasses (Blank
& Bell, 1982; Sidhu & Datta, 2015). Birds, mostly corvids,
were the third most important group of synzoochorous
dispersers, moving seeds of 12% of plant species. Land
crabs, mostly from the family Gecarcinidae, also hoard
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Table 3. Number of plant species dispersed by each group of
hoarding animal during each phase of the dispersal process.
Primary dispersal is when the animal moves seeds directly from
the plant or from the ground directly beneath the mother plant.
Secondary dispersal is when the animal moves seeds that were
primarily dispersed biotically or abiotically. Diplosynzoochory
occurs when a seed is moved sequentially by more than one
synzoochorous disperser. The number of plant species in which
more than one type of disperser provided either primary or
secondary dispersal is also included

Primary
dispersal

Secondary
dispersal Diplosynzoochory

Land crab 0 45 0
Insect 259 192 19
Bird 46 25 0
Marsupial 2 14 0
Rodent 142 484 17
Rodent + Land crab 0 16 0
Rodent + Insect 0 6 4
Rodent + Bird 22 3 41

seeds and may contribute to effective seed dispersal. Finally,
we found evidence of synzoochory by marsupials, although
this evidence was very scarce. In fact, as far as we know,
only one species of rat-kangaroo, Hypsiprymnodon moschatus,
has been observed hoarding 13 species of seeds (Dennis,
2003), and two species of bettongs, Bettongia penicillata and B.
lesueur, have been observed in the wild caching seeds of four
plant species, Santalum spicatum, S. acuminatum, Acacia acuminata
and Gastrolobium microcarpum (Murphy et al., 2015; Chapman,
2015). Furthermore, it is known that the mountain pygmy
possum Burramys parvus caches seeds in captivity (Kerle, 1984),
but no information exists about this behaviour in the wild
(Smith & Broome, 1992).

The caching behaviour, and its implications for the
effectiveness of seed dispersal, varies among the different
groups of dispersers. Ants, granivorous carabids and land
crabs are mostly larder hoarders that take the seeds to
their burrows and nests, storing them in large quantities
before consuming them (Hartke, Drummond & Liebman,
1998; Steinberger, Leschner & Shmida, 1991; Whittaker,
Partomihardjo & Riswan, 1995; Honek, Martinkova &
Jarosik, 2003; Fall, Drezner & Franklin, 2007; Bulot, Provost
& Dutoit, 2016). Some seeds are forgotten within nests
or in the middens surrounding them and can germinate
and recruit new individuals. Some rodents are also larder
hoarders. Rats of the genus Rattus carry many (up to
thousands) seeds and other food to sheltered husking stations
to eat them there (Campbell et al., 1984; McConkey et al.,
2003; Dennis et al., 2005). Other rodents, such as the Indian
giant squirrel Ratufa indica, make larder hoards in arboreal
nests (Somanathan, Mali & Borges, 2007). Among birds,
the acorn woodpecker Melanerpes formicivorus stores a large
number of acorns in granaries in tree trunks (Koenig &
Mumme, 1987). In all of these cases, although it is likely
rare to extremely rare, there is the potential for some seeds

to survive, germinate, and emerge as seedlings. By contrast,
corvids and many rodents are scatter hoarders, burying the
seeds in small, scattered caches (Bossema, 1979; Gómez,
2003; Pesendorfer et al., 2016; Lichti, Steele & Swihart,
2017). It is widely acknowledged that scatter-hoarding species
are much more effective as dispersers than larder-hoarding
species (Vander Wall, 1990; Vander Wall & Beck, 2012;
Pesendorfer et al., 2016).

In general, plants with records of synzoochorous dispersal
were dispersed almost exclusively by a single group of
dispersers (Table 3), although the prevalence of this pattern
may be due in part to incomplete data. In addition, when
more than one disperser group dispersed a plant species, the
combinations of groups were not randomly assembled. In
all cases when two different dispersers interacted with the
same plant species, one was a rodent (Table 3). Remarkably,
rodents also dispersed about 50% of the plants dispersed
by birds. We suspect that with more complete data this
proportion would be even larger.

(4) Phylogenetic distribution of synzoochory

A further feature that makes synzoochory a potentially
important process in natural systems is its phylogenetic
spread. When mapping the presence of synzoochory onto
a fossil-calibrated phylogeny of seed plant families (Harris
& Davies, 2016), this dispersal mode, rather than being
circumscribed to a distinct part of the land plant phylogeny,
is widely scattered and present in most plant lineages
(Fig. 2). It seems that synzoochory has evolved multiple
times during the evolution of land plants, a pattern shared
with other dispersal modes such as myrmecochory (Lengyel
et al., 2010). An indirect way to explore this idea is to look
for the phylogenetic signal of synzoochory, a way of testing
whether a given trait is randomly distributed across the
phylogeny, supporting the idea of multiple origins, or evolved
following a Brownian distribution, suggesting that the trait is
perfectly phylogenetically conserved and supporting the idea
of just a few origins followed by subsequent diversification.
We found an intermediate situation. There was some
phylogenetic structure because the phylogenetic signal of all
disperser groups except insects departed significantly from
that expected under a random distribution (i.e. from D = 1;
Table 4). At the same time, the distribution of synzoochorous
dispersal was not totally phylogenetically conserved for any
of the disperser groups (Table 4). Thus, it appears that
the evolution of synzoochory has been labile; although
having some phylogenetic structure, it has appeared multiple
times and among clades of variable ages throughout the
evolutionary history of land plants.

The evolutionary history of synzoochory has been dis-
cussed previously. For example, Vander Wall (2001) suggests
that synzoochorous nuts evolved both from wind-dispersed
and frugivore-dispersed plants. Our phylogenetic analysis
suggests that, irrespective of the type of dispersal transition
underlying the evolution of synzoochory, this dispersal mode
is potentially very ancient, since some lineages in which
synzoochory occurs are very old, more than 250 million
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Fig. 2. Phylogenetic relationships of the plant families where synzoochory has been reported at least in one species (N = 1339 plant
species, 157 plant families). Tree calibration according to Harris & Davies (2016). Green = angiosperms; Blue = gymnosperms.
Myr, million years.

years (Fig. 2). Interestingly, the synzoochorus animal dis-
persers are much younger than this. Rodents appear to have
originated during the Paleocene, approximately 92 million
years ago (Mya) (Asher et al., 2005; Bininda-Emonds et al.,
2007), much more recently than the appearance of their host
plants. The oscine passerines, the group to which the corvids
belong, originated about 53 Mya (Ericson et al., 2002, 2005;
Ericson & Johansson, 2003), although Fernando, Peterson
& Shou-Hsien (2017) show that Corvidae likely originated

more recently in the late Miocene, 8.0–5.9 Mya. These are
all much more recent than the likely origin of synzoochory
according to our phylogeny. The situation is different for
hoarding invertebrates. Ants likely originated in the Late
Jurassic or Early Cretaceous, about 100 Mya, whereas the
subfamily Myrmecinae, to which most synzoochorous ants
belong, probably appeared during the Late Cretaceous,
90 Mya (Barden, 2017). In fact, there are fossils of Messor, a
ant genus with many hoarding species, from deposits dating
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Table 4. Phylogenetic signal of each disperser group. The
phylogenetic signal was tested using the parameter D (Fritz
& Purvis, 2010) performed in the R package ‘caper’ v.0.5.2
(Orme, 2018). D = 0 indicates a phylogenetically conserved
trait; D = 1 indicates that the trait is randomly distributed
across the phylogeny. The R script used to perform this analysis,
written in R v.3.1.0, is provided as Appendix S2

P values departing from

D values D = 1 D = 0

Rodent 0.737 0.002 0.000
Bird 0.525 0.001 0.069
Insect 0.868 0.124 0.000
Land crab 0.667 0.020 0.011

to 34 Mya (Barden, 2017). Likewise, carabid beetles belong-
ing to the granivorous tribe Harpalinae appeared during the
Cretaceous between 92 and 153 Mya (Ober & Heider, 2010).
A similar situation is seen for land crabs; Gecarcinidae, the
most frequently synzoochorous crab family, appeared during
the middle Eocene or even earlier during the Late Cretaceous
(Brösing, 2008; Tsang et al., 2014). This palaeontological evi-
dence suggests three possibilities: (i) synzoochory was carried
out exclusively by invertebrates during early geological peri-
ods; (ii) other now-extinct vertebrates, perhaps including the
multituberculates (Vander Wall, 2001), cached seeds before
the origin of present-day caching rodents and birds; or (iii)
synzoochory has appeared more recently in old lineages.
This latter possibility suggests that perhaps synzoochory did
not evolve per se, but rather arose as accidental interactions
that occurred spontaneously when the right animal traits met
the right plant traits. Nonetheless, once synzoochory arose,
it appears that in at least some of these interactions both
the animals and the plants have evolved traits to increase
the benefits and decrease the drawbacks of the interaction
(Vander Wall, 2001).

(5) Geographical and ecological distribution of
synzoochory

Synzoochory has been reported in all terrestrial biogeo-
graphic realms except Antarctica (Fig. 3). It has been
reported in most parts of the planet, from South and North
America to Europe, South Africa and tropical Africa, the Far
East, Australia and many oceanic islands (Fig. 3). Clearly,
synzoochory occurs all over the world rather than being
restricted to or dominant in only one or a few regions. In
this respect, it is similar to endozoochory, which also occurs
in most biomes (Jordano, 2013), but it is more widely dis-
tributed than myrmecochory, a dispersal mode with about
90% of the plant participants found in Australia and South
Africa (Rico-Gray & Oliveira, 2007). Nevertheless, from
Fig. 3 some potential gaps are clear. For example, there is a
dearth of information on synzoochory in most of the African
continent and Central Asia. This could be due to true rarity
of synzoochory in these regions or more likely to a lack of
research effort (see Yadok et al., 2018).

Likewise, synzoochory seems to be present in a wide
variety of habitats. For example, synzoochory is frequently
observed in tropical habitats, where agoutis, giant rats
and similar rodents disperse many tree species (Forget,
Milleron & Feer, 1998; Forget & Vander Wall, 2001). In
fact, about 50% of the synzoochorous plants included in
our database inhabit tropical environments, mostly species
of palms and fabaceous trees and shrubs. This does not
necessarily mean that synzoochory is the major dispersal
type in the tropics. To determine this, it will be necessary to
calculate the proportion of plant species actually dispersed
by synzoochory in different tropical communities, something
that is beyond the scope of the present study. Synzoochory
has been also extensively reported in oaks, beeches, and
walnut trees in temperate and mediterranean forests from
Europe, North America, Central Asia, and the Far East
(Den Ouden, Jansen & Smit, 2005; Purves et al., 2007; Lei,
Shen & Yi, 2012; Pesendorfer et al., 2016). In many of
these forests, nut-bearing trees are a major component of the
plant community, and consequently synzoochory is probably
the most important dispersal mechanisms in the dynamics
and structure of these communities. Dispersal by hoarding
animals is also common in arid and semi-arid systems. In
these environments, the plants most frequently dispersed by
synzoochory are small-seeded shrubs and grasses, and the
main synzoochorous dispersers seem to be rodents and ants
(Giannoni et al., 2001; Beck & Vander Wall, 2010; Arnan
et al., 2012; Vander Wall & Beck, 2012).

III. THE ECOLOGICAL RELEVANCE OF
SYNZOOCHORY

(1) Synzoochory as primary or secondary dispersal

Seed dispersal is a multi-step process; in many cases seeds
are moved repeatedly and sequentially from the mother
plant to the final position where they germinate and
recruit (Chambers & MacMahon, 1994). Seed dispersal
may sometimes comprise two neatly differentiated phases:
primary dispersal and secondary dispersal (Vander Wall &
Longland, 2004). Primary dispersal is when the animal moves
seeds directly from the plant or from the ground directly
beneath the mother plant. Secondary dispersal is when the
animal moves seeds that were primarily dispersed biotically
(endozoochorously, epizoochorously, etc.) or abiotically (by
wind, water, etc.).

Synzoochory appears to be primarily a secondary
dispersal mode. In fact, almost 65% of the plant species
included in our database were secondarily dispersed
through synzoochory (Table 3). Thus, synzoochory is widely
considered a mechanism contributing to the redistribution
of seeds that were primarily dispersed by other biotic
agents or by abiotic processes (Vander Wall et al., 2005b;
Beck & Vander Wall, 2011; Arnan et al., 2012; Jansen
et al., 2012). Secondary dispersal is the most important
service provided by land crabs and rodents (Table 3). These
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> 150 case studies

51 — 149 case studies

26 — 50 case studies

6 — 25 case studies

1 — 5 case studies

Fig. 3. Geographic distribution of reported cases of synzoochory (N = 2223 case studies).

animals tend to harvest seeds from the soil, in faeces, in
regurgitated pellets or even underground (Enders & Vander
Wall, 2012). In addition, these two types of dispersers act
frequently as secondary dispersers of the same plant species
(Table 3).

Nonetheless, synzoochory is also a relevant mode of
primary dispersal. We found that more than 550 species
of plants in our database (about 40% of the plants) were
primarily dispersed by synzoochory. In most cases of primary
dispersal, caching animals tend to harvest the seeds directly
from the plant. This behaviour is very common in well-known
caching animals such as corvids (Bossema, 1979; Lanner,
1996), tree squirrels (Moller, 1983; Viljoen, 1983) and, to a
lesser extent, harvester ants (Bulot, Provost & Dutoit, 2016).
We presume that many plant species dispersed by harvester
ants are both primarily and secondarily dispersed by these
insects. More information on these synzoochorous dispersers
is required before we can comment on the importance of
primary versus secondary dispersal in these systems. However,
primary dispersal also occurs after the seeds have detached
from the parent plant. In these cases animals move seeds
that have fallen directly beneath the canopies of the parent
plants that otherwise would remain undispersed (Schupp
et al., 2010). This behaviour has been documented in several
rodents, such as woodmice (Gómez et al., 2008) and agouties
(Jansen et al., 2002), as well as in some tropical ants (Lima,
Oliveira & Silveira, 2013), and it is probably more common
than previously thought. Interestingly, although the diversity
of plant species primarily dispersed by synzoochory may
be lower than the diversity of secondarily dispersed species,
their abundance and geographic distribution can be similar

or even higher. For example, Vander Wall & Moore (2016)
and Vander Wall et al. (2017) found that, in North America,
the abundance of plants primarily dispersed by synzoochory
was twofold the abundance of plants secondarily dispersed by
synzoochory. This was mostly because the main components
of many North-American plant communities are oaks and
other nut-bearing trees, such as pinyon pines, beeches and
walnuts. We presume that a similar situation occurs in Europe
and temperate Asia, where nut-bearing trees dominate most
forests. Thus the synzoochorous seed-dispersal mode will
be central to the life histories and natural regeneration of
tree species that dominate some biomes (e.g. temperate and
boreal forests, some tropical rainforests), with a potential role
as foundation species (Ellison et al., 2005) that have a central
functional effect at the ecosystem level.

Sometimes the same hoarding animal species act as both
the primary and secondary disperser. This phenomenon
occurs for example when jays or tree squirrels pilfer
and redistribute primary caches made by conspecifics
(Vander Wall, 2000, 2002b; Emery & Clayton, 2001).
In fact, intraspecific cache pilfering is not rare among
scatter-hoarding rodents and corvids (Vander Wall, 2000,
2002b; Gerhardt, 2005), and may have influenced the
foraging and caching behaviour of the dispersers and the
spatial pattern and dispersal distance of cached seeds (Moore
et al., 2007; Sunyer et al., 2013). Consequently, we presume
that many nut-bearing trees are frequently dispersed both
primarily and secondarily by the same species of rodents and
birds.
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(2) Diplosynzoochory

Diplochory, or two-phase dispersal, occurs when a seed is
moved sequentially by more than one dispersal mechanism
or vector (Vander Wall & Longland, 2004). Six main types
of diplochory have been identified: anemocory followed by
synzoochory, ballochory followed by myrmecochory, and
endozoochory followed by either dispersal by dung beetles,
synzoochory, myrmecochory or endozoochory (Vander
Wall & Longland, 2004; Nogales et al., 2007; Padilla,
Gónzalez-Castro & Nogales, 2011; Hämäläinen et al., 2017).
However, diplochory can also emerge when two hoarding
animals act as both primary and secondary dispersers of
the same seed. That is, synzoochory by one species of
disperser followed by synzoochory by a second disperser
species. There is ample evidence of the existence of such
diplosynzoochory in nature, although no formal description
of this phenomenon has been proposed. In agreement
with this empirical evidence, we found many species to be
dispersed both primarily and secondarily by different types
of synzoochorous animals (Table 3). Most of these species
were oaks (32 spp.) and pines (9 spp.). These two genera are
primarily dispersed either by jays or by tree squirrels and
secondarily by ground-dwelling rodents such as heteromyids,
murids or cricetids (Quintana-Ascencio, González-Espinosa
& Ramírez-Marcial, 1992; Vander Wall, 2002b; Gómez,
2003; Hollander & Vander Wall, 2004; Gómez et al., 2008).
Diplosynzoochory will be frequent in plant species that are
dispersed by different hoarding animals. Based on our current
knowledge, we presume that diplosynzoochory will be the
rule in most nut-bearing trees.

(3) The quantity component of effectiveness in
synzoochorous dispersal systems

An accurate understanding of the relevance of any ecological
interaction requires estimation of the intensity of interaction
among the interacting partners (Wootton & Emmerson,
2005). There are multiple, somewhat contrasting definitions
and metrics of interaction intensity or strength (Paine, 1980;
Wootton, 1997; Wootton & Emmerson, 2005; Bascompte,
Melián & Sala, 2005; Bascompte, Jordano & Olesen, 2006;
Schleuning et al., 2011). In plant–disperser interactions, the
intensity of interaction is usually quantified as the quantity
component of seed-dispersal effectiveness, estimated as the
proportion of the fruit crop removed by a given disperser
(Schupp, 1993; Schupp, Jordano & Gómez, 2010, 2017).
This metric denotes the relative frequency of interaction
events maintained with that disperser and it is analogous
to some per capita interaction strength metrics widely used
in food-web studies (Wootton, 1997; Laska & Wootton,
1998). Because synzoochorous dispersers act as both seed
predator and seed disperser, the most reliable estimate of the
quantity component of synzoochory effectiveness will be the
proportion of the seed yield that is harvested and dispersed by
each species of hoarding animal, irrespective of its final fate
(whether cached, forgotten and recruited as a new plant, or
whether consumed and killed either before or after caching).

Under this definition, the proportion of seeds consumed in
situ (in the parent plant or in experimental seed stations) is
not included in the computation of the interaction intensity,
because no dispersal service has been provided.

We found information on the quantity component in 893
case studies. Pooling these studies, synzoochorous dispersers
dispersed on average 52% of the seed crop. This magnitude
was similar irrespective of the phase where synzoochory
happened (primary = 50%; secondary = 52%), suggesting
that in many species synzoochory is not a supplementary
mechanism of moving seeds but is likely the main route by
which plants disperse their seeds (Vander Wall & Beck, 2012).
Nevertheless, caution is needed because often the proportion
of seed removed was not estimated from direct observations
of parent plants but rather from seed stations where seeds
were generally concentrated at high densities, resulting
in potential overestimation of removal rates. In addition,
because secondary dispersal occurs once the seeds have
been subject to primary dispersal, the interaction intensity at
this phase is probably also overestimated. Nevertheless, we
need to take into account that these estimates are derived
from pairwise interactions (one plant – one disperser). In
fact, these magnitudes are similar to the interaction intensity
reported for other dispersal modes for the entire assemblage
of dispersers. In endozoochorous systems, the proportion
of fruit removed by assemblages of 5–25 frugivorous birds
ranges between 46 and 100% depending on fruit traits
(seed size, fruit size, pulp composition, etc.) (Herrera, 1984;
Davidar & Morton, 1986; Jordano, 1995, 2013; Jordano &
Schupp, 2000). A similar magnitude of interaction intensity
(up to 50%) was found in myrmecochorous dispersal by
ants removing elaiosome-bearing seeds in some sites in
Australia (Hughes & Westoby 1990, 1992; Parr et al., 2007).
Thus, the intensity of interaction between synzoochorous
plants and dispersers is similar to that found in other widely
studied dispersal systems. Nevertheless, in synzoochory, the
interaction intensity varies across dispersers (Table 5). The
proportion of the seed crop dispersed by some taxa, such
as nuthatches (Sittidae), woodpeckers (Picidae), tuco-tucos
(Ctenomyidae), dung beetles (Scarabaeidae), and pacas
(Cuniculidae), is relatively low, while the proportion of
seeds dispersed by other animals, such as ants (Formicidae),
ground beetles (Carabidae), land crabs, corvids, heteromyids,
squirrels (Sciuridae), murids, agouties (Dasyproctidae) and
bettongs (Potoroidae), is high (Table 5). These latter taxa
are thus likely to have stronger ecological and evolutionary
impacts on their interacting plant partners (Lanner, 1996;
Wolff & Debussche, 1999; Hulme, 2002; Hulme &
Kollmann, 2005).

IV. THE CONSEQUENCES OF THE DUAL ROLE
OF SYNZOOCHOROUS DISPERSERS

(1) The absence of a specific synzoochory syndrome

Seed-dispersal syndromes are suites of traits adapted
to specific dispersal modes and that have evolved in
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Table 5. Quantity component (the proportion of seeds that
is harvested and dispersed but not necessarily cached) of the
interaction between synzoochorous plants and dispersers.

Disperser N
Quantity

component ±1 S.E.

Insect 111 0.41 ± 0.03
Carabidae 4 0.60 ± 0.04
Formicidae 89 0.38 ± 0.03
Gryllidae 16 0.58 ± 0.08
Scarabaeidae 2 0.11 ± 0

Land crab 33 0.57 ± 0.06
Gecarcinidae 28 0.59 ± 0.07
Gecarcinucidae 1 0.63
Grapsidae 1 0.67
Ocypodidae 3 0.37 ± 0.14

Bird 53 0.43 ± 0.05
Corvidae 39 0.48 ± 0.05
Paridae 7 0.24 ± 0.13
Picidae 1 0.08
Sittidae 3 0.02 ± 0.01

Rodent 694 0.53 ± 0.01
Caviidae 3 0.13 ± 0.03
Cricetidae 82 0.55 ± 0.04
Ctenomyidae 1 0.04
Cuniculidae 4 0.08 ± 0.07
Dasyproctidae 97 0.52 ± 0.03
Echimyidae 58 0.54 ± 0.03
Heteromyidae 60 0.71 ± 0.04
Hystricidae 8 0.50 ± 0.14
Muridae 189 0.56 ± 0.03
Nesomyidae 18 0.49 ± 0.08
Octodontidae 1 0.60
Platacanthomyidae 1 0.10
Sciuridae 168 0.46 ± 0.03

Marsupial 2 0.63 ± 0.12
Potoroidae 2 0.63 ± 0.12

response to selection imposed by the dispersers (van der
Pijl, 1982). In some cases, identifying the seed-dispersal
syndrome is easy. For example, the myrmecochorous
syndrome can be identified by the presence and chemical
composition of elaiosomes (Gorb & Gorb, 2003), whereas the
endozoochorous syndrome is traditionally identified by the
presence of fleshy fruits (van der Pijl, 1982). However, the
evidence supporting the existence of a genuine synzoochory
syndrome based on one or several main adaptations is weak
(Vander Wall & Beck, 2012). For example, although the
presence of wingless seeds is widely associated with dispersal
by synzoochory in pines (Lanner, 2000), synzoochorous
dispersers also disperse winged pine nuts (Thayer & Vander
Wall, 2005; Vander Wall, 2008). Similarly, seed coat and/or
endocarp thickness has been claimed to be an adaptation
to synzoochory. Although some synzoochorous dispersers
do exert positive selection on this trait (Benkman, Balda
& Smith, 1984; Siepielski & Benkman, 2008; Zhang &
Zhang, 2008), others exert negative selection (Siepielski &
Benkman, 2007, 2008), causing the emergence of conflicting
selection. We presume that there is no clear synzoochory
syndrome because the functional diversity of synzoochorous

dispersers is high and the selection regimes exerted by them
vary in sign and are even conflicting in some systems
(Howe & Smallwood, 1982). The fact that synzoochory
is primarily a secondary dispersal mode (see Section III.1)
means that other selective pressures, related to primary
dispersal and probably pre-dating the selective pressures
imposed by extant synzoochorous dispersers, may have
played a more prominent role shaping plant traits for many
synzoochorously dispersed species.

The trait most often considered in terms of synzoochory is
seed size (Vander Wall & Moore, 2016; Vander Wall et al.,
2017). Many studies have explored the relationship between
seed mass and interaction with caching animals (Brewer,
2001; Jansen et al., 2002; Jansen, Bongers & Hemerik, 2004;
Vander Wall, 2003; Gómez, 2004; Xiao, Zhang & Wang,
2005a; Forget et al., 2007; Gómez et al., 2008; Muñoz &
Bonal 2008; Wang & Chen, 2009), generally finding that
larger seeds are more frequently or more effectively dispersed
than smaller ones (but see Yadok et al., 2018), and hence
suggesting that synzoochory may select for larger seeds
(Galetti et al., 2010). However, most of these studies were
conducted on nut-bearing trees primarily dispersed by jays
or large rodents, which represent only a restricted subset
of synzoochorous seed dispersers. Vertebrates tend to move
large seeds: the mean (± S.D.) seed mass in our database
dispersed by birds and rodents was 1580.1 ± 312.7 mg
(N = 204 species) and 4464.5 ± 381.7 mg (N = 577 species),
respectively. However, given the high functional diversity of
synzoochorous dispersers, many of which act as secondary
dispersers, we should expect more than one optimum in seed
size. For example, ants and other insects tend to disperse very
small seeds (Kaspari, 1996; Lai et al., 2018): the average size of
seeds dispersed by insects in our database was 3.6 ± 0.4 mg
(N = 311 species). Similarly, many rodents inhabiting arid
environments hoard seeds of grasses (McAdoo et al., 1983;
McMurray, Jenkins & Longland, 1997; Borchert 2004; Sivy
et al., 2011). Large seed size has previously been attributed
to selection by extinct endozoochorous megafauna (Janzen
& Martin, 1982; Jansen et al., 2012; Galetti et al., 2018),
suggesting that large seed size in some synzoochorously
dispersed species could be an exaptation.

Lastly, a trait that might affect the size of synzoochorously
dispersed seeds is the presence of cheek pouches in rodents
or gular (= throat) pouches in birds. The presence of gular
pouches was not related to the size of dispersed seeds in
the sample of birds included in our data set (F = 0.51,
d.f. = 2,120, P = 0.601, N = 123 plant species, one-way
ANOVA), but corvids were the only group that included
pouched birds. However, four rodent families (Cricetidae,
Heteromyidae, Nesomyidae, Sciuridae) in our database have
cheek pouches to collect and store seeds (Ryan, 1986).
In addition, within Sciuridae, pouches are present only
in ground squirrels (e.g. Tamias, Eutamias, Ammospermophilus,
Spermophilus and Sciurotamias; Ryan, 1986). A comparison of
seed sizes dispersed by rodent species with pouches against
those dispersed by rodent species without pouches identified
a significant difference (F = 15.88, d.f. = 2,628, P = 0.0001,
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N = 631 plant species, one-way ANOVA), with larger seeds
being dispersed by pouchless rodents (4659 ± 412 mg) or
by a combination of rodents with and without pouches
(3903 ± 733 mg) than those dispersed exclusively by rodents
with pouches (1229 ± 300 mg). To check that this was not
due to differences in body mass across rodent groups, we
repeated this analysis only for Sciuridae and controlled for
body mass, but found the same pattern (data not shown).
Whereas pouched rodents tend to move many small seeds of
grasses and forbs, pouchless rodents often move individual
large seeds such as acorns. Thus, it appears that the presence
of cheek pouches allow rodents to forage energetically
efficiently on small seeds.

In sum, there is no strong support for the suggestion
that synzoochory is restricted to a narrow seed size range.
Rather, the empirical evidence suggests that synzoochorous
dispersal occurs for a wide range of seed sizes. It would
be interesting to determine whether the diversity of seed
sizes observed in synzoochorously dispersed plants is the
result of multiple adaptive optima to synzoochory, i.e. that
seed size is adapted not to a synzoochory syndrome but
to specific synzoochorous dispersers. Thus, there could be
separate syndromes of dispersal by corvids, by agouties,
by squirrels, etc. However, the evolution of seed size will
have been shaped in many synzoochorously dispersed plants
not by their dispersers but by other biotic and abiotic
agents, such as drought, shade, predispersal and postdispersal
seed predators, seedling–seedling competition, and seed
dormancy and germination timing (Westoby, Jurado &
Leishman, 1992; Leishman & Westoby, 1994; Saverimuttu
& Westoby, 1996; Bond, Honig & Maze, 1999; Gómez,
2004).

(2) The mutualism–antagonism continuum in
synzoochory

A distinctive feature of synzoochory is that the interacting
animals have two direct and contrasting effects on the plant,
one positive in terms of effective seed dispersal and the
other negative in terms of seed predation (Hulme, 2002;
Retana et al., 2004; Theimer, 2005; Vander Wall & Beck,
2012). Thus, synzoochorous interactions are located along
a mutualism–antagonism continuum. Unfortunately, there
is no unified quantitative method available to establish the
position that a given pairwise interaction occupies on that
continuum [but see Zwolak & Crone (2012) and Sawaya et al.
(2018)]. We propose that one way to identify this position is to
calculate the proportion of interaction events with negative
effects for the fitness of the plant relative to the proportion
of events with positive effects. In the case of synzoochory,
this is the proportion of seeds consumed either in situ or after
dispersal but before caching (negative fitness effect) versus the
proportion of seeds that are dispersed and cached (positive
fitness effect).

Following this approach, we can plot the position of each
pairwise interaction along a line representing the normalized
difference in the proportion of interaction events with positive
fitness effects (dispersal and caching of seeds) minus the

proportion of interaction events with negative fitness effects
(seed predation). For example, Fig. 1 shows where each
potential Holm oak disperser species is located on this −1.0
to +1.0 gradient. Figure 4 presents results for all studies in our
database that included appropriate information. It is notable
that few pairwise interactions appear near either the positive
or negative extremes, with most values being intermediate
along the continuum (Fig. 4A). When grouping by different
types of caching animals, interaction events tend to be more
negative in invertebrates than in vertebrates (Fig. 4C). Within
rodents, there is also extensive variation in the proportion
of positive versus negative interaction events. For cricetids,
nesomyids and sciurids interactions tended to have relatively
higher (less negative) values, whereas values for Neotropical
spiny rats (echimyids) and porcupines (hystricids) were more
negative (Fig. 4B). Thus the former group of rodents perhaps
function more effectively as seed dispersers, whereas the
latter group behaves mostly as seed predators. It is important
to acknowledge that the net effect of any hoarding animal
on its host plant can be beneficial or detrimental not only as
a consequence of its position along this continuum but also
as a function of the difference in population recruitment
of that plant with and without the animal (Jansen &
Forget, 2001; Zwolak & Crone, 2012; Elwood et al., 2018).
Consequently, any synzoochorous interaction will be located
along a positive–negative continuum irrespective of its net
outcome on the host–plant population.

Exactly where different pairwise interactions are located
on this continuum will depend on variations in particular
intrinsic and extrinsic factors characterizing the pair of
interacting organisms (Hurly & Lourie, 1997; Theimer,
2005; Chang & Zhang, 2014). For example, the difference
in size between seeds and granivores is one intrinsic factor
determining the proportion of seeds cached versus consumed
(Jansen et al., 2002, 2004; Vander Wall, 2003; Gómez,
2004; Xiao, Zhang & Wang, 2005a; Forget et al., 2007;
Wang & Chen, 2009). Another important factor is related
to the caching behaviour of granivores (Dally, Clayton &
Emery, 2006). Seed chemistry may also affect the proportion
eaten versus cached (Fleck & Woolfenden, 1997; Smallwood,
Steele & Faeth, 2001; Wang & Chen, 2008). For example,
high-tannin acorns are cached more often than low-tannin
acorns (Xiao, Chang & Zhang, 2008; Xiao et al., 2009) or
survive partial consumption by granivores better (Steele et al.,
1993). Among extrinsic factors, the presence of competitors,
potentially pilfering caches, influences the probability of a
seed of being cached or eaten (Vander Wall, Hager &
Kuhn, 2005a; Dally et al., 2006; Dittel, Perea & Vander
Wall, 2017). The presence of non-caching granivores may
also influence the behaviour of hoarding granivores (Price
& Mittler, 2006; Puerta-Piñero, Gómez & Schupp, 2010).
For example, the proportion of Quercus ilex acorns cached by
rodents is influenced by the presence of red deer Cervus elaphus

(Muñoz & Bonal, 2007; Muñoz, Bonal & Díaz, 2009). The
spatial structure of vegetation, both at local and landscape
scales, may also determine the proportion of seeds cached
versus eaten (Puerta-Piñero et al., 2010; Yang & Yi, 2011;
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Puerta-Piñero, Pino & Gómez, 2012b; Castro et al., 2012;
Morán-López et al., 2015a,b; Aliyu et al., 2018). For example,
the proportion of seed effectively dispersed by Eurasian jays
is significantly influenced by the presence of pine woodlands
and afforestation (Rolando, 1998; Gómez, 2003; Pons &
Pausas, 2007b; Sheffer et al., 2013; Pesendorfer et al., 2016).
In summary, the variable effect of granivores on plant fitness
is not only context-dependent but also depends on intrinsic
features of the interacting organisms.

V. PROSPECTS

Synzoochory is an abundant and widespread dispersal mode
that should be included when studying the relationships
between animals and seeds. Due to the dual nature of

this interaction, synzoochory should be considered not
only by ecologists interested in mutualistic interactions and
ecological networks but also by those working on antag-
onistic interactions and food-web dynamics. Considering
synzoochorous interactions between granivorous animals
and plants will provide a more accurate perspective on the
functioning of natural systems (Elwood et al., 2018).

To understand fully the importance of synzoochory
in nature, it is necessary to determine accurately the
net outcome of synzoochorous interactions. This requires
the conceptual and methodological unification of two
separate ecological subdisciplines: dispersal ecology and
seed-predation ecology. Future experiments designed to
quantify seed loss to seed predators should take into
consideration the possibility that some removed seeds are
actually effectively dispersed rather than eaten (O’Rourke

Biological Reviews 94 (2019) 874–902 © 2018 Cambridge Philosophical Society



Synzoochory 889

et al., 2006; Alignier et al., 2008; van Blerk, West & Midgely,
2017). It is convenient to assume, as most studies on
seed predation do, that all seeds removed are consumed
(Westerman et al., 2006), but this may not be true. Taking
this into account will require changes to the way ecological
experiments are performed and analysed. For example,
when offering seeds at feeding stations to granivores, seed
fate should be tracked beyond removal from the station, to
establish that the seed is actually consumed rather than being
cached or dropped (Forget & Wenny, 2005; Xiao, Jansen &
Zhang, 2006a; Hirsch, Kays & Jansen, 2012; Sidhu & Datta,
2015; van Blerk et al., 2017). Although this will undoubtedly
make experiments more laborious, it will provide precious
information on the real nature of seed–animal interactions.

An important gap in the study of synzoochory is related
to our ignorance about how effective this dispersal mode is.
Although a practical framework for evaluating seed-dispersal
effectiveness has been developed (Schupp, 1993; Schupp
et al., 2010, 2017), it is applied only infrequently to
synzoochory studies (but see, for example, Hollander &
Vander Wall, 2004). In addition, very few studies collect
data on seed fate past the seed-caching stage, a very early
stage in recruitment for evaluating the true effectiveness
of dispersal. Consequently, we know little about the
impact of synzoochory relative to other dispersal modes
(endozoochory, myrmecochory, anemochory, etc.) on plant
fitness and population dynamics (Hulme, 1998, 2002; Jansen
& Forget, 2001; Vander Wall & Longland, 2004; Pesendorfer
et al., 2016; Elwood et al., 2018), as well as on community
structure and mutualistic network topology and architecture
(Donatti et al., 2011). Filling this gap will not only improve
our understanding of natural systems but will also have
enormous value for developing appropriate conservation and
restoration strategies (Pons & Pausas, 2008; Puerta-Piñero
et al., 2012a; Pesendorfer et al., 2016).

A sizeable number of the pairwise interactions considered
herein involved large-seeded plant species and large-bodied
mammal and bird species. Recent empirical evidence
shows that these large-seeded plants and megafauna are
being particularly affected by drivers of global change
such as deforestation, defaunation, forest fragmentation,
overhunting, etc. (Barnosky et al., 2012; Dirzo et al.,
2014), leading to ecosystems with reduced ecological
function (e.g. significantly reduced C-storage potential of
defaunated forests due to lack of recruitment of large-seeded
hardwood species) (Bello et al., 2015). Several tree taxa with
synzochorous adaptations are dominant foundation species
in their ecosystems, and their dispersers are megafauna
with unique ecological roles. Losing these synzoochorous
interactions would thus represent a serious threat to the
persistence of temperate and tropical forest ecosystems.

VI. CONCLUSIONS

(1) Synzoochorous dispersal is carried out by seed-caching
seed predators. This type of dispersal differs from most other

animal-mediated dispersal modes because the animal partner
in this plant–animal interaction plays a dual role, acting as
both seed disperser and seed predator. In contrast to other
dispersal modes, synzoochory is a dispersal mode in which
the dispersers, rather than being attracted to a secondary
trait, are directly attracted to the seed itself: the seed is the
reward.

(2) The ecology of synzoochory has been studied mostly in
systems involving large-seeded plants and scatter-hoarding
rodents and corvids. However, synzoochory occurs in most
types of plants, from trees to herbs bearing both large
and small seeds, and among angiosperm and gymnosperm
lineages (Fig. 2). It is likely that this mode of dispersal
has evolved multiple times and that in some plant
lineages might be a very ancient way of dispersing seeds.
Synzoochory is probably far more common than we have
been able to document. Many studies on seed predation
have probably overlooked the occurrence of synzoochrous
dispersal.

(3) Synzoochory is performed by a variety of granivorous
animals, from vertebrates such as rodents and birds to
invertebrates such as insects and land crabs. All share a
common feature – they cache a proportion of the seeds that
they harvest. However, they differ in the intensity with which
they interact with the plant. Some animals, such as squirrels
and corvids, disperse a relatively high proportion of the seeds
that they find, whereas others, such as nuthatches and rats,
disperse only a small fraction of seeds and tend to eat most
seeds in situ (Table 5).

(4) The high frequency of synzoochory probably reflects
the opportunistic nature of this interaction and the absence
of specialized structures associated with the dispersal event.
While myrmecochory requires the presence of elaisomes,
endozoochory by frugivores generally requires the presence
of fleshy pulps and epizoochory is greatly facilitated by
external structures such as hooks or sticky substances,
synzoochory occurs without any apparent specialized
adaptation. In this type of dispersal, the seed itself is
the dispersal structure, and any seed can potentially
be transported and cached by caching granivores given
appropriate ecological conditions.

(5) Synzoochory may be both a primary and a secondary
dispersal mode. Primary synzoochorous dispersers are mostly
corvids, some types of rodents and ants, whereas other
types of rodents, land crabs and some insects are the main
secondary dispersers (Table 3). Synzoochory sometimes
occurs during both phases of the dispersal process. This
diplosynzoochory is especially likely when the primary
disperser is a corvid or a squirrel and the secondary disperser
is a ground-dwelling rodent.

(6) Perhaps the most distinctive feature of synzoochory
is the dual role that most hoarders play as seed predator
and effective seed disperser. These pairwise interactions
can be located along a mutualism–antagonism continuum.
Pairwise synzoochorous interactions are widely spread along
this continuum.
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(7) Synzoochory is not an anecdotal ecological interaction;
it is pivotal to the functioning of many forest ecosystems
where the natural regeneration of keystone large-seeded plant
species crucially depends on the persistence of animal species
that are under serious threat due to forest loss, overhunting
and other human activities. Conservation efforts should aim
to preserve not only the participant species, but also the
conditions supporting their functional interactions.
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*Gómez, J. M., Puerta-Piñero, C. & Schupp, E. W. (2008). Effectiveness of rodents
as local seed dispersers of Holm oaks. Oecologia 155, 529–537.
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Malo, J. E. & Suárez, F. (1995). Herbivorous mammals as seed dispersers in a
Mediterranean dehesa. Oecologia 104, 246–255.

Mandyam, K. G. & Jumpponen, A. (2015). Mutualism–parasitism paradigm
synthesized from results of root-endophyte models. Frontiers in Microbiology 5, 776.

*Manley, G. V. (1971). A seed-cacheing carabid (Coleoptera). Annals of the Entomological

Society of America 64, 1474–1475.
*Manso, R., Pardos, M. & Calama, R. (2014). Climatic factors control rodent

seed predation in Pinus pinea L. stands in Central Spain. Annals of Forest Science 71,
873–883.
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*Martínez Sánchez, J. L. (2004). Fragmentación y remoción de semillas en el piso
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*Müller de Lima, R. E., de Sá Dechoum, M. & Castellani, T. T. (2015). Native
seed dispersers may promote the spread of the invasive Japanese raisin tree (Hovenia

dulcis Thunb.) in seasonal deciduous forest in southern Brazil. Tropical Conservation

Science 8, 846–862.
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*Murúa, R. & González, L. (1981). Estudio de preferencia y hábitos alimentarios en
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Contrasting responses of insects and vertebrates as seed consumers of two neotropical
oak species: the interactive effects of individual crop size and seed mass. Forest Ecology

and Management 401, 99–106.
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la dieta del ratón espinoso mexicano Liomys irroratus (Gray, 1868) en una selva seca del sur del

estado de Morelos. Philosophical Dissertation: Universidad Autónoma del Estado de
Morelos, México.
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Schupp, E. W., Jordano, P. & Gómez, J. M. (2010). Seed dispersal effectiveness
revisited: a conceptual review. New Phytologist 188, 333–353.
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Sunyer, P., Muñoz, A., Bonal, R. & Espelta, J. M. (2013). The ecology of seed
dispersal by small rodents: a role for predator and conspecific scents. Functional

Ecology 27, 1313–1321.
*Suzuki, K., Yamane, Y. & Yanagawa, H. (2016). Invasive cutleaf coneflower seeds

cached in nest boxes: possibility of dispersal by a native rodent. Plant Species Biology

31, 300–303.
*Tamura, N. & Shibasaki, E. (1996). Fate of walnut seeds, Juglans airanthifolia,

hoarded by Japanese squirrels, Sciurus lis. Journal of Forest Research 1, 219–222.
*Taylor, B. (2010). Seed removal by the red-rumped agouti, Dasyprocta leporina, on a Caribbean

Island. Philosophical Dissertation: Clemson University, South Carolina.
Tella, J. L., Baños-Villalba, A., Hernández-Brito, D., Rojas, A., Pacífico,

E., Díaz-Luque, J. A., Carreta, M., Blanco, G. & Hiraldo, F. (2015). Parrots
as overlooked seed dispersers. Frontiers in Ecology and the Environment 13, 338–339.

*ter Steege, H. & Hammond, D. S. (2001). Character convergence, diversity, and
disturbance in tropical rain forest in Guyana. Ecology 82, 3197–3212.

Thanos, C. A. (2005). Theophrastus on oaks. Botanika Chronika 18, 29–36.
Thayer, T. C. & Vander Wall, S. B. (2005). Interactions between Steller’s jays

and yellow pine chipmunks over scatter-hoarded sugar pine seeds. Journal of Animal

Ecology 74, 365–374.
*Theimer, T. C. (2001). Seed synzoochory by white-tailed rats: consequences for

seedling recruitment by an Australian rain forest tree. Journal of Tropical Ecology 17,
177–189.

Theimer, T. C. (2005). Rodent scatterhoarders as conditional mutualists. In Seed Fate:

Predation, Dispersal and Seedling Establishment (eds P. M. Forget, J. E. Lambert, P. E.
Hulme and S. B. Vander Wall), pp. 283–295. CABI Publishing, Wallingford.

*Thibault, J. C., Prodon, R., Villard, P. & Seguin, J. F. (2006). Habitat
requirements and foraging behaviour of the Corsican nuthatch Sitta whiteheadi.
Journal of Avian Biology 37, 477–486.

Thomas, R. B. & Weigl, P. D. (1998). Dynamic foraging behavior in the southern
flying squirrel (Glaucomys volans): test of a model. The American Midland Naturalist 140,
264–270.

*Thompson, D. C. & Thompson, P. S. (1980). Food habits and caching behavior of
urban grey squirrels. Canadian Journal of Zoology 58, 701–710.

Tiffney, B. H. & Mazer, S. J. (1995). Angiosperm growth habit, dispersal and
diversification reconsidered. Evolutionary Ecology 9, 93–117.
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