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Indirect effects shape species fitness in 
coevolved mutualistic networks

Leandro G. Cosmo1 ✉, Ana Paula A. Assis2, Marcus A. M. de Aguiar3, Mathias M. Pires4, 
Alfredo Valido5, Pedro Jordano6,7, John N. Thompson8, Jordi Bascompte9 & 
Paulo R. Guimarães Jr10

Ecological interactions are one of the main forces that sustain Earth’s biodiversity.  
A major challenge for studies of ecology and evolution is to determine how these 
interactions affect the fitness of species when we expand from studying isolated, 
pairwise interactions to include networks of interacting species1–4. In networks, chains 
of effects caused by a range of species have an indirect effect on other species they  
do not interact with directly, potentially affecting the fitness outcomes of a variety of 
ecological interactions (such as mutualism)5–7. Here we apply analytical techniques 
and numerical simulations to 186 empirical mutualistic networks and show how both 
direct and indirect effects alter the fitness of species coevolving in these networks. 
Although the fitness of species usually increased with the number of mutualistic 
partners, most of the fitness variation across species was driven by indirect effects.  
We found that these indirect effects prevent coevolving species from adapting to their 
mutualistic partners and to other sources of selection pressure in the environment, 
thereby decreasing their fitness. Such decreases are distributed in a predictable way 
within networks: peripheral species receive more indirect effects and experience 
higher reductions in fitness than central species. This topological effect was also 
evident when we analysed an empirical study of an invasion of pollination networks  
by honeybees. As honeybees became integrated as a central species within networks, 
they increased the contribution of indirect effects on several other species, reducing 
their fitness. Our study shows how and why indirect effects can govern the adaptive 
landscape of species-rich mutualistic assemblages.

Fitness—the ability of organisms to survive and reproduce—is the 
fundamental biological currency that underlies the ecology and evo-
lution of biodiversity8,9. Variation in fitness among organisms medi-
ates processes and patterns at multiple scales, from the persistence 
and evolution of populations to the reorganization and functionality 
of ecological communities10,11. In nature, much of fitness variation is 
the outcome of ecological interactions, ranging from antagonism to 
mutualism12–14. Mutualism is particularly intriguing because some of 
the most diverse ecosystems, such as coral reefs and tropical forests, 
are strongly supported by these interactions of mutual benefit13. Mutu-
alistic interactions, by definition, increase the fitness of interacting 
individuals, so they can raise the average fitness across the individu-
als of a given species15 (the ‘species fitness’). Fitness increases may be 
fuelled by reciprocal evolutionary changes in traits (coevolution), 
which in turn may cascade back and further change species fitness16. 
Such fitness–coevolution–trait feedback effects may be altered by 
interactions with other species within ecological communities3,17,18. 

As a result, species fitness may evolve through a combination of direct 
reciprocal selection on each pair of interacting species and indirect 
effects mediated by selection acting on species that are not linked 
directly as interacting partners5,18. These indirect effects, in turn, may 
create or intensify conflicting selective pressures, thereby reshaping 
the adaptive landscape and the distribution of species fitness within 
a network of interactions5,19. This combination of direct and indirect 
effects may pervade most interaction networks among free-living  
species, where interactions typically show very low specificity.

Here we use a combination of mathematical modelling and 
empirical mutualistic networks to understand how indirect effects 
shape species fitness. Our starting point is a classical discrete time 
quantitative-genetics equation that describes how a continuous pheno
typic trait evolves in response to a selection gradient20 (Methods). 
In evolutionary biology, a selection gradient describes the relation-
ship between species fitness and a continuous phenotypic trait by 
dictating the strength and direction of natural selection on the trait20.  
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For mutualistic species, natural selection has at least two distinct 
sources. First, selection from mutualistic partners favours complemen-
tarity of traits, for instance when the proboscis of a butterfly matches 
the length of the floral tube of plants, or in multi-species assemblages, 
when a plant trait fits within the range of potential animal partners21–23. 
The second selective force comes from the environment and other fac-
tors unrelated to mutualisms, such as abiotic factors, that favour an 
optimal trait value for each species (the ‘environmental optima’)24–27. 
In our coevolutionary model we assumed that these two sources of 
selective pressure therefore make up the selection gradient and drive 
the evolution of a species trait (Methods):
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each mutualistic partner j, with each partner j favouring trait comple-
mentarity with a relative strength qij

t( )  (Methods). In turn, the second 
term, θ z( − )i i

t( ) , describes the component of the selection gradient that 
drives the evolution of species traits towards the environmental optima. 
Other parameters in equation (1) include mi, which measures the pro-
portional contribution of mutualism as selective pressures, and ϱi, 
which measures the sensitivity of the selection gradient to the different 
values of trait zi.

The selection gradient corresponds to the slope of the relationship 
between the natural logarithm of species fitness and mean trait values, 
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to derive the fitness of each species as a function of trait values. Using 
this approach, we derived the fitness function that underlies our  
coevolutionary model:
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Equation (2) represents the fitness of a given species i relative to its 
theoretical maximum fitness and describes the relationship between 

a species’ phenotypic trait (represented by zi) and its fitness. Thus, 
w0 < ≤ 1i , the upper bound corresponding to the case of species i achiev-

ing the maximum possible fitness for a species with the same number 
of mutualistic partners (Methods).

The function described in equation (2) shows that species fitness 
depends on two main components, each representing a different aspect 
of the fitness landscape. First, it depends on a mutualistic component 
in which fitness increases with the average trait matching of species 
across its mutualistic partners, si/ki. The term s a e= ∑i j j i

N
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represents the total trait matching with all j mutualistic partners, and 
∑k a=i j j i

N
ij=1, ≠  is the total number of mutualistic partners of species i 

(aij = 1 if species i interacts with species j, otherwise aij  =  0). The param-
eter α controls the sensitivity of trait matching to differences in the 
trait values of mutualistic partners. The second component, repre-
sented by θ z( − )i i

2, describes the squared distance between a species’ 
trait value and the environmental optimum, θi. The less distant species 
traits are from their environmental optima, the greater the fitness is. 
Therefore, species achieve the maximum possible fitness w( = 1)i  when 
their traits perfectly match the traits of all their mutualistic partners 
and the environmental optimum (Methods).

Using the fitness function and our coevolutionary model, we first 
explored how coevolving in a mutualistic network affects species fit-
ness. We performed numerical simulations of our model parameter-
ized with the structure of 186 empirical networks, encompassing a 
wide range of network topologies and types of mutualism worldwide 
(Methods). The coevolutionary dynamics quickly reached a global 
stable equilibrium in which traits and, consequently, species fitness 
ceased to change (Methods and Extended Data Fig. 1). Trait values and 
species fitness at equilibrium are analytically predictable, even if not 
all species are guaranteed to persist throughout the coevolutionary 
dynamics (Extended Data Fig. 1 and Supplementary Methods). At equi-
librium, the fitness of species that coevolved in networks varied 5 times 
as much as the fitness of isolated pairs of coevolved species (s.d. = 0.025 
in networks versus 0.005 in pairs; Fig. 1a). This increased variation in the 
fitness of species that coevolved within networks was due in part to the 
number of direct partners. Species fitness was higher for species with 
two or more direct partners than for species in the network that inter-
acted with only one direct partner, leading to a bimodal distribution of 
fitness values (Fig. 1a,b). The greater variability in fitness for species that 
coevolve in mutualistic networks holds under a wide range of scenarios 
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Fig. 1 | Coevolution in mutualistic networks increases variability in species 
fitness. a, Histogram showing the distribution of species fitness (rescaled 
relative to the average) that coevolved in a single mutualistic pair (green bars) 
or within the 186 empirical networks used to parameterize the model (purple). 
b, When coevolving within networks, species fitness increased with the 
number of direct, mutualistic partners up to a saturation point, but it was 
highly variable among species with the same number of partners. Each fitness 

value corresponds to the mean value for 103 numerical simulations of our 
model. In both a and b, fitness values are rescaled relative to the average of 
each scenario (coevolution in pairs or in networks) in such a way that zero 
indicates the average of the distributions in each scenario. In b, only species 
that coevolved in networks are shown. Parameter values are as follows: mi = 0.5, 
σ = 1.0Gz
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, ϱi = 0.2, α = 0.2. θi and initial trait values were sampled from a uniform 
distribution U[0, 10].
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in which other ecological processes may drive species with low fitness 
extinct and the extant species coevolve to a new equilibrium (Extended 
Data Fig. 2 and Supplementary Methods). Furthermore, the bimodality 
in the distribution of species fitness becomes less noticeable as the 
number of extinctions increases, but only disappears when the number 
of extinctions exceeds 40% of species in the network (Extended Data 
Fig. 2 and Supplementary Methods). The increase in fitness for species 
with two or more partners was expected and occurs because having 
a larger number of partners evens out differences in the contribution 
to fitness of individual mutualistic partner species, increasing fitness 
through geometric mean effects28–31 (Supplementary Methods). Even 
so, the effects of the number of partners quickly saturated and only 
partly explained the variability in species fitness (Fig. 1b), indicating 
that indirect effects have a potential role in shaping fitness variation 
across species.

After quantifying the overall effects of coevolution in networks for 
species fitness and identifying the potential importance of indirect 
effects, we next derived an analytical approximation that explicitly 
assesses how indirect evolutionary effects shape the fitness of species 
that coevolve within networks (Supplementary Methods). By com-
bining the fitness function (equation (2)) and the equation for spe-
cies’ traits at coevolutionary equilibrium (Methods), we obtained the  
following approximation:

≅∗ ϱw̄ e (3)
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where w *i  is the fitness of species i at the coevolutionary equilibrium, 
〈θ〉 represents the mean environmental optimum across all species 
other than i in the network, 〈z〉 is the average trait value across mutu-
alistic partners of i, and Fi represents the proportional contribution of 
indirect evolutionary effects to the evolution of species i.

Our analytical approximation showed that indirect evolutionary 
effects prevent coevolving species from simultaneously achieving high 
trait matching with mutualistic partners and trait values favoured by 
environmental selection. Thus the larger the contribution of indirect 
effects generated by other species to the evolution of a given species i, 
the smaller the fitness of i (Fig. 2a). Our analytical results also showed 
that the contribution of indirect effects is strongly affected by network 
structure: indirect effects are minimized if a species is the central spe-
cies of a network, whereas peripheral species are affected more by 
indirect effects. This increased influence of indirect effects means 
that the fitness of peripheral species is lower than the fitness of central 
species (Supplementary Methods).

The relationship between species fitness and indirect effects was 
strong and held for numerical simulations that relaxed the simplifying 
assumptions of our analytical approximation (Fig. 2a–c) and incor-
porated the network structure of empirical mutualism. Sensitivity 
analyses further indicated that the role of indirect effects in species 
fitness substantially weakens only when mutualistic selection is either 
very weak or very strong, or when the environmental optima of spe-
cies are very narrowly distributed in the network (mi ≤ 0.1 or mi ≥ 0.9; 
Extended Data Figs. 3–5 and Supplementary Methods). Furthermore, 
the way in which indirect evolutionary effects shape fitness holds even 
when the species with the lowest fitness become extinct, for instance, 
because of the ecological dynamics of the system (Extended Data Fig. 6 
and Supplementary Methods). Except at these extremes values of mi, 
indirect evolutionary effects can strongly shape species fitness within 
coevolving mutualistic networks. These extremes are not expected to 
be common in nature, for two reasons. First, we have evidence that the 
selection imposed on species’ traits by mutualistic interactions and 
other sources in the environment are similar in strength to each other, 
even for highly intimate types of mutualism, such as symbiosis32–35. 
Second, mutualistic networks are composed of different organisms, 
each with its own life history and developmental constraints. In turn, 
species’ life history and developmental constraints can be radically 

different among species and can shape how traits respond to selection12. 
Our results therefore indicate that indirect evolutionary effects should 
have a pervasive role in shaping the fitness of mutualistic species in 
ecological communities.

Human activities that homogenize ecological communities can lead 
to a reorganization of direct and indirect interactions, ultimately chang-
ing the outcome of coevolution and altering species fitness27,36–38. One 
important example would be the introduction of a new species into a 
network. As a case study, we explored the potential consequences of 
the reorganization of direct and indirect effects by the introduction 
of the European honeybee (Apis mellifera), which often becomes a 
central species in pollination networks worldwide39–42. We first per-
formed numerical simulations on 73 empirical networks that include  
A. mellifera (Fig. 3a and Methods) by first removing it from the network 
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Fig. 2 | The position of species within networks and indirect evolutionary 
effects shape species fitness in coevolved mutualistic networks. a, An 
analytical approximation (solid curve and shaded region) predicts that indirect 
evolutionary effects decrease the fitness of species coevolving in mutualistic 
networks. The data points represent species with either one partner (light 
colours) or more than one (darker dots). This effect held for numerical 
simulations (n = 10³ numerical simulations for each of the 186 empirical 
networks), as shown, for example, for species in a plant–pollinator network 
(inset). b, This effect also held for species across all empirical networks after 
controlling for the effects of the number of mutualistic partners. The graph 
shows species with three partners across all networks. c, Example of a seed- 
dispersal network (inset) showing how species in peripheral positions receive 
more indirect effects and have lower fitness than core species. The colour of 
points represents species fitness: the darker the colour, the higher the fitness. 
In a, the line represents the mean predicted fitness, and shaded regions show 
standard deviations when sampling species’ environmental optima (θi and 〈θ〉) 
and 〈z〉 from a normal distribution; θi ~ N(0.0, 0.1), 〈θ〉 ~ N(2.5, 0.1) and 
〈z〉 ~ N(2.5, 0.1). Points correspond to the mean value of species fitness (a and b) 
or the contribution of indirect effects (c) across 10³ numerical simulations. 
Other parameter values are as follows: mi = 0.5, σ = 1.0Gz
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, iϱ  = 0.2 and α = 0.2.  
For numerical simulations, θi and initial trait values were sampled from a 
uniform distribution U[0, 10]. In a and b, the x axis represents the proportional 
contribution of indirect evolutionary effects (equation (3)).
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and running the coevolutionary model until it reached equilibrium. We 
then connected A. mellifera back to the network to simulate an inva-
sion and evaluated how the fitness of all the other native species was 
affected after reaching a new equilibrium. This approach allowed us to 
use our controlled scenario as a theoretical benchmark. Nevertheless, 
this certainly represents a simplistic assumption because it neglects the  
reduction in the number of species, mutualistic interactions and the 
potential rewiring of native pollinators after the invasion. We will relax 
these assumptions later by considering a field experiment involv-
ing a pollination network both before and after the introduction of  
A. mellifera by beekeeping practices39.

Our simulations show that invasive species such as A. mellifera can 
substantially affect the fitness of native species (Fig. 3b) and reshape 
their adaptive landscapes (Fig. 3c). Specifically, we found that the 
effects of the invasion differed between species that interact directly 
with honeybees and those that interact only indirectly. The fitness of 
the honeybee’s direct partners increased on average after the invasion 
(n = 10³ simulations; Fig. 4a), whereas for species that interact only 
indirectly with the honeybee, the overall effect on fitness was negative 
(n = 10³ simulations; Fig. 4a). In our simulations, the average change 
in fitness was positive only if the increase in fitness of gaining a new 
mutualistic partner (the honeybee) compensated for the decrease in 

fitness caused by changes in indirect evolutionary effects (Fig. 4b). In 
contrast, for species that interact only indirectly with the honeybee, 
fitness decreased because the invasion increased the contribution of 
indirect evolutionary effects to the fitness of these species (Fig. 4c). As 
our results above showed, increasing the contribution of indirect evo-
lutionary effects reduces species fitness because it hinders the ability 
of species to adapt at the same time to both mutualistic partners and 
the environment. These results held for different values of mutualistic 
selection (Extended Data Figs. 7–9 and Supplementary Methods).

However, when A. mellifera invades a network in nature, some native 
pollinators become disconnected from the network (that is, they 
become functionally extinct), and those left in the system rewire their 
interactions and lose mutualistic partners through resource competi-
tion39. We explored these additional consequences using the data from 
an experimental field study in which the mutualistic networks before 
and after the arrival of A. mellifera are available39. These simulations 
showed that the fitness of 68% of the native species decreased after the 
introduction of A. mellifera because the honeybee not only increased 
the contribution of indirect evolutionary effects, but it also drastically 
reduced the number of mutualistic partners for nearly all the native 
plant species in the network (Extended Data Fig. 10). Together with our 
theoretical benchmark, these results indicate that mutualistic interac-
tions with an invasive species can decrease the fitness of most native 
species in networks by reorganizing the indirect evolutionary effects. 
Despite this, the negative effects on fitness can be buffered if species are 
able to obtain new mutualistic partners with similar effectiveness after 
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rescaled relative to the maximum absolute value of average change in fitness 
across all species. Parameter values are as follows: mi  =  0.5, σ = 1.0Gz

2
i

, = 0.2iϱ , 
α  =  0.2. θi and initial trait values were sampled from a uniform distribution 
U[0, 10].



Nature  |  www.nature.com  |  5

the invasion, but the experimental evidence indicates that this would 
rarely be the case, especially at high densities of the invader species39.

Our results indicate that mutualists coevolve in a dynamic ‘seascape’ 
within which adaptive peaks can be transient and cause natural selec-
tion to push mutualists to lower or higher fitness points, depending on 
the structure and reorganization of indirect evolutionary effects43. Spe-
cifically, indirect effects resulting from coevolution constrain species 
fitness. We therefore predict that selection may favour the evolution 
of lifestyles that reduce the negative impact of indirect evolutionary 
effects, especially in species-rich assemblages with low interaction 
specificity. Two examples are specialists with a high dependency on 
mutualisms and supergeneralists. For these specialists, their depend-
ence on mutualistic interactions is so high that it minimizes how indi-
rect evolutionary effects create conflicting selective pressures with the 
environment and negatively impact fitness. Supergeneralists rely on 
resources provided directly by multiple partners, so their fitness is less 
affected by indirect effects, thereby maximizing the contribution of 
direct effects over indirect ones1,18. Furthermore, when supergeneralists 
invade native communities, this may reduce the fitness of mutualists 
through indirect evolutionary effects, an often-overlooked outcome 
of biological invasions. Moreover, a generalized effect of environmen-
tal drivers (such as the effects of climate change on pollinators) may 
strongly influence both the sign and the magnitude of indirect effects, 
translating to larger fitness losses among species. More generally, our 
results highlight how and why the structure of ecological networks 
can govern the fitness, the adaptive landscape and, consequently, the 
persistence of species across Earth’s ecosystems.
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Methods

Modelling coevolution in mutualistic networks
The starting point of our model is a classic quantitative-genetics  
equation20 that relates how the mean value of a continuous trait (zi) of 
a species changes between successive generations in response to the 
selection pressures in the environment:
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the selection gradient and connects how changes in zi affect the mean 
fitness of species i. In natural communities, the traits of a species that 
engages in mutualistic interactions are subject to the selection pres-
sures of the species it interacts with and other sources in the environ-
ment. We therefore assumed that the selection gradient, W

z
dln

d
i

i
, is 

composed of two sources of selection pressure. First, we assumed that 
for a given species i, mutualism contributes to a proportion, mi, of the 
evolution of trait zi. Following empirical evidence and previous 
work5,26,27,44, we further assumed: that mutualistic interactions of spe-
cies i with each partner j favour trait complementarity (such as the 
complementarity between insect mouthparts and the floral tubes of 
plants); and that each mutualistic partner j of species i contributes a 
given amount (qij) to the selection pressures that act on trait zi. We also 
assumed that the selection pressures from other features of the envi-
ronment, such as abiotic factors, contribute to the remaining portion 
(1 − mi) of the evolution of trait zi and favour an optimal trait value (the 
‘environmental optima’, θi). Given these assumptions, the selection 
gradient, W

z
dln
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i

i
, can be described as:
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where ϱi is a constant that measures the sensitivity of species fitness 
to changes in the values of zi

t( ). The term qij
t( )  quantifies the evolution-

ary contribution of a given mutualistic partner j to the selection 
imposed on zi

t( ). We assumed that qij
t( ) depends on a trait-matching rule 

such that qij
t( )  increases with the trait matching between species i and 

a partner j, relative to all other k partners of i:
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in which aij(aik) = 1 if species i interacts with species j(k) in the network 
or equals 0 otherwise; and α is a parameter that controls the sensitivity 
of qij

t( )  to the distance between species traits. Combining equations 
(4)–(6) results in our coevolutionary model, equation (1).

Linking coevolution and species fitness
In our model, the selection gradient, W

z
dln

d
i

i
 connects the evolution of 

species traits to how mutualism and the environment affect their mean 
fitness5. To derive the expression that explicitly links coevolution to 
species’ mean fitness, w z( )i i , we solved equation (5) to obtain species’ 
absolute fitness (Supplementary Methods). Assuming a selection gra-
dient first, and then integrating it to find fitness, results in an equation 
that describes an entire family of fitness functions that could lead to 
the same selection gradient (see Supplementary Methods for more 
examples):
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where ci is a constant that emerges from the integration of the selection 
gradient. Thus, instead of a specific function, equation (7) is a general 

representation of an entire family of fitness functions, depending on 
the choice of the constant ci. It can be shown that equation (7) can lead 
to other fitness functions used in previous work by choosing different 
values for ci (Supplementary Methods). Because in equation (7) species 
fitness scales up with the number of mutualistic partners with the value 
of the environmental optima (θi), and depends on an arbitrary constant 
(ci), we performed two additional steps. First, we found the conditions 
under which species achieve their maximum theoretical absolute fit-
ness. The absolute fitness of species will be maximized whenever spe-
cies are at their adaptive peaks (that is, when = 0

W
z

dln
d

i

i
). From equation 

(5), because 0 < mi <1, this condition is fulfilled when z z=i j for all mutu-
alistic partners j, and, at the same time, z θ=i i  (except for the trivial 
case in which = 0iϱ ). Thus fitness is maximized when species are per-
fectly adapted to all mutualistic partners and to the environmental 
optima (that is, when all species share the same environmental optima). 
Putting this condition into equation (7) yields:
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Next, we computed species’ relative fitness (wi) as the ratio W

W
i

imax,
, 

resulting in equation (2), which indicates how close the species is to 
the maximum fitness value for a species with the same number of  
partners.

Linking indirect evolutionary effects to species fitness
Our coevolutionary model always leads to a stable equilibrium of spe-
cies’ traits (and therefore species fitness). Using the simplifying 
assumption that q q≈ij

t
ij

( ) , from equation (1), species traits reach a coev-
olutionary equilibrium when:

∑m q z z m θ z( * − *) + (1 − ) ( − *) = 0 (9)
i j j i
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ij j i i i i=1, ≠

Equation (9) leads to:

∑z m q z m θ* − * = (1 − ) , (10)i i
j j i

N

ij j i i
=1, ≠

and equation (10) can be rewritten in matrix form as:

ΘZ ZQ ψ* − * = , (11)

I Q ψ* = ( − ) . (12)−1 ΘZ

In equations (11) and (12), Z* is an N × 1 vector of species’ traits at the 
coevolutionary equilibrium, ψ is an N × N diagonal matrix with 1 − mi 
as its diagonal elements; Θ is an N × 1 vector of species’ environmental 
optima (θi); and I is the identity matrix. The Q matrix is a matrix in which 
the entries, miqij, contain the direct evolutionary effects between spe-
cies i and j.

T = (I − Q)−1 is a matrix that contains not only the direct but also the 
indirect evolutionary effects that come from the multiple pathways 
connecting species in the network. This interpretation can be recov-
ered by noticing that the T matrix is the result of a matrix power series:

∑I Q Q Q Q Q Q( − ) = + + + … = . (13)−1 0 1 2 3

=0

∞

ℓ

ℓ

The powers of the Q matrix in equation (13) correspond to matrices 
that represent the effects of species on each other through multiple 
pathways in the network. Thus, although the Q matrix represents the 
direct evolutionary effects that species exert on each other, each 
power ℓ of the Q matrix contains the effects that species j exert on 
species i through a chain of effects of length ℓ. For instance, the  



elements qij
(2) of the matrix Q2 contains the effects of species j on spe-

cies i through pathways of length 2, such as the indirect evolutionary 
effect of one plant species on another plant mediated by a shared 
animal mutualist. Consequently, the T matrix contains the sum of the 
evolutionary effects among species flowing through all possible path-
ways in the network. Using the T matrix, we first partitioned the con-
tribution of indirect evolutionary effects from the direct ones. Then 
combining equation (12) with the fitness function allowed us to express 
species fitness as a function of the total amount of incoming evolu-
tionary effects for each species (Supplementary Methods) and to 
partition the contribution of direct and indirect evolutionary effects 
to fitness.

Numerical simulations
We evaluated how mutualistic coevolution in ecological networks is 
connected to species’ average fitness by combining numerical simula-
tions and an analytical approximation of our coevolutionary model. 
These simulations were parameterized with the structure of 186 empir-
ical networks (Supplementary Table 1). Our dataset comprised 186 
empirical networks distributed among three types of mutualism: plants 
with extrafloral nectaries that are protected by ants (n = 4); animals 
that consume the fleshy fruits of plants and disperse their seeds (n = 34); 
and plants with flowers that are pollinated by animals (n = 148). These 
mutualistic interactions span a wide range of network structures of 
multiple-partner mutualism. All these networks were obtained from 
the Web of Life database (www.web-of-life.es). Here we focus on mutu-
alism in which there are two distinct sets of species, forming bipartite 
networks, but other types of mutualism that do not form bipartite 
networks can also be used to parameterize our coevolutionary model45. 
Examples of such mutualism include Müllerian mimetic rings in which 
unpalatable species display a warning signal and indirectly benefit 
each other by a decreased per capita attack rate from predators45. In 
simulations with the same network, we parameterized aij as 1 if species 
i and j interacted and 0 otherwise. Furthermore, initial trait values ( zi) 
and environmental optimum values (θi) were sampled from a uniform 
distribution U[0, 10]. We sampled environmental optimum values from 
a uniform distribution because, in mutualistic communities, species 
can differ widely in terms of life history, physiological constraints and, 
as a result, environmental optima12. With this approach we did not 
assume any particular shape for the distribution of environmental 
optima of species because, in a uniform distribution, all values occur 
with the same frequency (they are equiprobable). However, our ana-
lytical approximation shows that our results do not rely on a particular 
distribution for the environmental optima of species, and we also pre-
sent the results of numerical simulations in which the sampling range 
of the environmental optimum is narrower than the interval used in 
the main text (Extended Data Fig. 4b).

All other parameters were held constant and were the same for all 
species (σ = 1.0Gz

2
i

, ϱ = 0.2i  and α = 0.2). We ran 1,000 simulations for 
each combination of network and mi value (mi = 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8 and 0.9) in which we first allowed species’ traits to achieve 
asymptotic values (defined as z z− < 10i

t
i

t( +1) ( ) −4 ). We then used these 
asymptotic trait values in equation (2) to compute the fitness of each 
species. In the main text we presented the results for the scenario in 
which mi = 0.5 because in empirical ecological communities the selec-
tion pressures from mutualistic interactions and other sources in the 
environment have been shown to be similar in strength to each 
other24,26,34,35. However, we also present the results of the numerical 
simulations for all other mi values (Extended Data Figs. 3 and 4 and 
Supplementary Methods).

We used these numerical simulations to test the predictions of our 
analytical approximations (Supplementary Methods). From the results 
of our numerical simulations, we built the matrix of total evolution-
ary effects, the T matrix, T  =  (I  −  Q)−1. In our model, the T matrix is 
an N × N matrix containing the total evolutionary effects among all 

N species in a network that determines the trait values of species at 
the coevolutionary equilibrium (equation (12)). The matrix of direct 
evolutionary effects (the Q matrix) was built using species’ trait values 
at the coevolutionary equilibrium. Following previous work18, we used 
the entries of the T matrix, tij, to calculate the contribution of indirect 
evolutionary effects to trait evolution as:
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where Fi is the contribution of indirect evolutionary effects to species 
i and aij = 1 if species i interacts with species j, and aij = 0 otherwise. All 
numerical simulations were performed using the Julia programming 
language46 and figures were produced in R47. The code to perform 
numerical simulations and reproduce our results is publicly available48.

Numerical simulations exploring the invasion of a 
supergeneralist species
To evaluate how an introduced supergeneralist species shapes the 
fitness of the native species, we performed numerical simulations 
parameterized with a subset of the networks we used (n = 73 empirical 
networks; Supplementary Table 2). These empirical networks were 
used because they were collected from ecological communities in 
which the European honeybee, A. mellifera, is not a native species. This 
species is a known supergeneralist that interacts with many species 
within networks. To simulate how the fitness of species changes after 
coevolving with the invader, we proceeded as follows. First, we created 
a ‘pre-invasion’ network by completely disconnecting A. mellifera from 
the network. We used this pre-invasion network to simulate the coev-
olutionary dynamics of species before the invasion, allowed species’ 
traits to reach asymptotic values (defined as ∣ ∣z z− < 10i

t
i

t( +1) ( ) −4 for all 
species) and used equation (2) to calculate species’ fitness at these 
asymptotic values. Second, we ‘reintroduced’ A. mellifera into the net-
work, simulated the coevolutionary dynamics with the resulting 
‘post-invasion’ network, allowed species traits to reach asymptotic 
values, and calculated species fitness again. Then, using the values for 
species fitness resulting from coevolution in the pre- and post-invasion 
networks, we evaluated how species fitness changed as a result of the 
A. mellifera invasion. Indirect evolutionary effects for the pre- and 
post-invasion networks were calculated using equation (14). For all 
numerical simulations, initial trait values and environmental optimum 
values were sampled from a uniform distribution U[0, 10]. All other 
parameters were held constant and were the same for all species 
(σ = 1.0Gz

2
i

, ϱ = 0.2i  and α  =  0.2). For each combination of network and 
values of mi (mi = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9), we ran 103 
numerical simulations (Extended Data Figs. 7–9 and Supplementary 
Methods for sensitivity analyses).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The dataset of empirical networks used in this study is available in a 
GitHub repository (https://github.com/lgcosmo/Cosmo_et_el_indirect_
effects_fitness), in Zenodo (https://doi.org/10.5281/zenodo.7945239) 
and in the Web of Life database (www.web-of-life.es).

Code availability
All the code to perform the numerical simulations used in this study is 
available in a GitHub repository (https://github.com/lgcosmo/Cosmo_
et_el_indirect_effects_fitness) and in Zenodo (https://doi.org/10.5281/
zenodo.7945239).
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Extended Data Fig. 1 | Species traits and fitness quickly reach equilibrium 
values after coevolving in mutualistic networks. a–c, Example for an ant-plant 
mutualistic network (panel a) of how species traits (panel b) and fitness (panel c) 
quickly reach a coevolutionary equilibrium. d, The coevolutionary equilibrium 
is reached even if not all species survive throughout the dynamics, as illustrated 
by three species that were randomly extinct from the network (for illustrative 
purposes, species whose trait values reach zero). Each point and line correspond 

to the values for each species in the network (represented by different colors). 
The diamond-shaped points on the right of panel b represent the environmental 
optima of each species θ( i). The dashed lines in panel d represent the trait values 
at equilibrium predicted by equation (12) using the matrix of the interactions 
among surviving species. Parameter values are as follows: σ = 1.0Gz

2
i

, = 0.2iϱ , 
α = 0.2, m = 0.5i . Initial trait values and environmental optima were sampled from 
a uniform distribution U [0, 10].
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Extended Data Fig. 2 | Coevolution in mutualistic networks increases the 
variability in species fitness when a certain percentage of the species with 
the lowest fitness become extinct, and the surviving species coevolve to a 
new equilibrium. Each set of panels represents a specific scenario where a 
certain percentage of the species in the network experience extinction after 
reaching the initial coevolutionary equilibrium. In all scenarios extinctions 
occurred in a specific order, starting with the species possessing the lowest 
fitness until a desired percentage of extinctions was reached. The corresponding 
extinction percentages for each scenario are as follows: a–b, 10%; c–d, 20%;  
e–f, 30%; g–h, 40%; and i–j, 50%. In all panels the red histogram bars depict the 
distribution of fitness of the surviving species in the new coevolutionary 
equilibrium for 10³ numerical simulations parameterized with the initial 
structure of empirical networks (n = 186 empirical networks). Green histogram 
bars correspond to the scenario in which species coevolve as isolated pairs  
and there are no extinctions. In the boxplots each point corresponds to the 
mean value for 10³ numerical simulations for a given species coevolving in the 
empirical mutualistic networks (n = 186 empirical networks). Fitness values are 
rescaled relative to the average of the scenario in which species coevolve in 
networks or as isolated pairs. Other parameter values are as follows: σ = 1.0Gz

2
i

,  
ϱi = 0.2, α = 0.2, and m = 0.5i . θi and initial trait values were sampled from a 
uniform distribution U [0, 10].



Extended Data Fig. 3 | Coevolution in mutualistic networks increases the 
variability in species fitness for different levels of strength of mutualistic 
selection. a, Histogram showing the distribution of mean equilibrium  
fitness of species for 10³ numerical simulations of a pair of coevolving species 
(green histogram bars), or of species within the 186 empirical networks used  
to parameterize the model (red histogram bars), for different values of mi 
(values above each panel). b, Boxplot showing how species fitness vary with  

the number of mutualistic partners for different values of mi (the intensity of 
mutualistic selection, values above each panel). Each point corresponds to  
the mean value for 10³ numerical simulations for a given species. In all panels 
fitness values are rescaled relative to the average of each scenario and mi 
(coevolution in pairs or in networks). Other parameter values are as follows: 
σ = 1.0Gz

2
i

, iϱ  = 0.2, α = 0.2, and mi as indicated on top of each panel. θi and initial 
trait values were sampled from a uniform distribution U [0, 10].
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Extended Data Fig. 4 | Indirect effects drive species fitness for different 
parameterizations of the model. a, Examples of how indirect evolutionary 
effects drive the fitness of species in numerical simulations across all empirical 
networks (n=186 empirical networks) for different values of mi (values above 
each panel), for species with five mutualistic partners. b, Examples of how 
indirect evolutionary effects drive the fitness of species in numerical 
simulations across all empirical networks (n = 186 empirical networks) for 
different intervals of θi (values above each panel), and sensitivity of species 

adaptive landscapes ( iϱ , diferente colors) for species with five mutualistic 
partners. Points in all panels represent average results for 10³ numerical 
simulations of each combination of empirical network and parameter values. 
Other parameter values are as follows: σ = 1.0Gz

2
i

 and α = 0.2. Values of mi and  
ϱi as indicated on each panel. In a, θi and initial trait values were sampled from  
a uniform distribution U [0, 10], while in b the upper bound of the uniform 
distribution is indicated in the values above each panel.



Extended Data Fig. 5 | Peripheral species are more affected by indirect 
effects drive for different networks and levels of mutualistic selection. 
Results from numerical simulations parameterized with the structure of 
empirical networks (n = 186 empirical networks), showing how the contribution 
of indirect evolutionary effects is smaller for core than peripheral species 
within the same network. This result holds for all values of mi, the intensity  
of mutualistic selection (values above each panel). Each point corresponds to 

the average for 10³ numerical simulations for each combination of species 
position (core or peripheral), empirical network and mi. Points of different 
colors correspond to species that were classified either as core species (red 
points) or peripheral species (blue points). Parameter values are as follows: 
m variable=i , σ = 1.0Gz

2
i

, iϱ  = 0.2, α = 0.2. θi and initial trait values were sampled 
from a uniform statistical distribution U [0, 10].
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Extended Data Fig. 6 | Indirect effects drive the fitness of surviving species 
when the least fit species become extinct, and the surviving ones coevolve 
to a new equilibrium. Each panel corresponds to scenarios in which a certain 
percentage of the species in the network underwent extinction after reaching  
a first coevolutionary equilibrium. For all scenarios extinctions occurred in a 
specific order, starting with the species possessing the lowest fitness, until a 
given percentage of extinctions was reached. The corresponding percentage 
of species extinct are as follows: a, scenario without extinctions; b, 10%; c, 20%; 

d, 30%; e, 40%; and f, 50%. Points in each panel represent average results for 
species with three mutualistic partners across 10³ numerical simulations 
parameterized with the initial structure of 186 empirical networks. In panels  
b–f, indirect evolutionary effects were computed from the matrix of 
evolutionary effects (Q-matrix) among the surviving species (equation 14). 
Parameter values are as follows: m = 0.5i , σ = 1.0Gz
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i

, ϱi = 0.2, α = 0.2. θi and initial 
trait values were sampled from a uniform statistical distribution U [0, 10].



Extended Data Fig. 7 | Invasion of a network by a supergeneralist changes 
the fitness of native species via coevolution for different levels of 
mutualistic selection. Histograms showing the average change in native 
species fitness (n = 10³ numerical simulations for each of the 73 empirical 
networks) after coevolving with the invasive species for different values of mi 

(the intensity of mutualistic selection, values above each panel). The frequency 
in the y-axis represents log(Counts). Other parameter values are as follows: 
σ = 1.0Gz

2
i

, ϱi = 0.2, α = 0.2, and mi as indicated on top of each panel. θi and initial 
trait values were sampled from a uniform distribution U [0, 10].
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Extended Data Fig. 8 | Direct and indirect evolutionary effects drive the 
change in fitness of native species directly interacting with a supergeneralist 
invader. Relationship between the average change in species fitness (n = 10³ 
numerical simulations for each of the 73 empirical networks) after the invasion 
and the change in the contribution of indirect evolutionary effects for direct 

partners of A. mellifera and for different values of mi (the intensity of mutualistic 
selection, values above each panel). Parameter values are as follows: σ = 1.0Gz

2
i

, 

iϱ  = 0.2, α = 0.2, and mi as indicated on top of each panel. θi and initial trait values 
were sampled from a uniform distribution U [0, 10].



Extended Data Fig. 9 | Indirect evolutionary effects drive the change in 
fitness of native species only indirectly interacting with a supergeneralist 
invader. Relationship between the average change in species fitness (n = 103 
numerical simulations for each of the 73 empirical networks) after the invasion 
and the change in the contribution of indirect evolutionary effects for indirect 

partners of A. mellifera and for different values of mi (the intensity of mutualistic 
selection, values above each panel). Other parameter values are as follows: 
σ = 1.0Gz

2
i

, iϱ  = 0.2, α = 0.2, and mi as indicated on top of each panel. θi and initial 
trait values were sampled from a uniform distribution U [0, 10].
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Extended Data Fig. 10 | Indirect evolutionary effects and rewiring of 
interactions shape the fitness consequences of the invasion of a network by 
the supergeneralist A. mellifera. a–b, Representations of the (a) pre- (before 
beekeeping activity) and (b) post-Apis (after beekeeping activity) network 
structures, showing how the invasion by A. mellifera (in red) reorganizes 
interactions. c–d, Histograms showing (c) the change in the number of partners 
and (d) the change in fitness that native species experienced after coevolving 

with A. mellifera. e, Relationship between the change in indirect evolutionary 
effects caused by A. mellifera and the change in the fitness of native species. 
The results in panels d and e correspond to the average results for the native 
species of 10³ numerical simulations of the coevolutionary dynamics in the  
pre- and post-Apis networks. Parameter values are as follows: m = 0.5i , σ = 1.0Gz
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i

, 

iϱ  = 0.2, α = 0.2. θi and initial trait values were sampled from a uniform statistical 
distribution U [0, 10].
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Give P values as exact values whenever suitable.
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data collection All of the empirical networks used to parameterize our numerical simulations are available at the Web of Life database (www.web-of-life.es).

Data analysis Numerical simulations were conducted in the Julia programming language (v1.5.0), while analysis of the numerical simulations were 
conducted using the R programming language (V4.0.0). All the code to perform the numerical simulations used in this study is available in a 
GitHub repository (https://github.com/lgcosmo/Cosmo_et_el_indirect_effects_fitness) and in Zenodo (doi:10.5281/zenodo.7945239).
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The dataset of empirical networks used in this study is available in a GitHub repository (https://github.com/lgcosmo/Cosmo_et_el_indirect_effects_fitness), in 
Zenodo (doi:10.5281/zenodo.7945239), and in the Web-of-Life Database (www.web-of-life.es).
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Reporting on sex and gender This information has not been collected.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description In our study we combined analytical approximations and numerical simulations of a coevolutionary model to understand how 
indirect evolutionary effects drive species fitness in mutualistic networks.

Research sample We parameterized our model with the structure of 186 empirical mutualistic networks.

Sampling strategy We used all of the available empirical networks in the Web of Life database.

Data collection All of the empirical networks were obtained from the Web of Life database (www.web-of-life.es).

Timing and spatial scale This is not applicable to our study since its a theoretical study that does not involve field work.

Data exclusions No data were excluded from the analysis.

Reproducibility All of the code, as well as the empirical datasets used to parameterize our analysis are available, allowing reliable reproduction of all 
of our results.

Randomization This is not applicable to our study since its a theoretical study that does not involve field work.

Blinding This is not applicable to our study since its a theoretical study that does not involve field work.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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